
No More Chasing Waterfalls: A Measurement Study of the
Header Bidding Ad-Ecosystem

Michalis Pachilakis
University of Crete / FORTH, Greece

mipach@ics.forth.gr

Panagiotis Papadopoulos
Brave So�ware

panpap@brave.com

Evangelos P. Markatos
University of Crete / FORTH, Greece

markatos@ics.forth.gr

Nicolas Kourtellis
Telefonica Research, Spain

nicolas.kourtellis@telefonica.com

ABSTRACT
In recent years, Header Bidding (HB) has gained popularity among
web publishers, challenging the status quo in the ad ecosystem.
Contrary to the traditional waterfall standard, HB aims to give back
to publishers control of their ad inventory, increase transparency,
fairness and competition among advertisers, resulting in higher
ad-slot prices. Although promising, li�le is known about how this
ad protocol works: What are HB’s possible implementations, who
are the major players, and what is its network and UX overhead?

To address these questions, we design and implementHBDetector :
a novel methodology to detect HB auctions on a website at real-
time. By crawling 35,000 top Alexa websites, we collect and analyze
a dataset of 800k auctions. We �nd that: (i) 14.28% of top websites
utilize HB. (ii) Publishers prefer to collaborate with a few Demand
Partners who also dominate the waterfall market. (iii) HB latency
can be signi�cantly higher (up to 3× in median case) than waterfall.
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•Information systems→ Online advertising; Display adver-
tising; Web log analysis;
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1 INTRODUCTION
�e largest portion of the digital advertisements we receive today
on the Web follows a programmatic ad-purchase model. Upon a
website visit, a real time auction gets triggered, usually via the
real-time bidding (RTB) protocol [27], for each and every available
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ad-slot on the user’s display. �ese auctions are hosted in remote
marketplace platforms called Ad Exchanges (ADXs) that collect the
bids from their a�liated Demand Site Platforms (DSPs). �e highest
bidder wins, and delivers its impression to the user’s display.

However, there are more than one ad networks that can provide
bids for an ad-slot. In the traditional standard for ad-buying, called
waterfalling, the di�erent ad networks (e.g., ADXs with their a�li-
ated DSPs) are prioritized in hierarchical levels [32]. �us, when
there is no bid from ad network #1, a new auction is triggered for ad
network #2, and so forth. Of course, apart from the auction-based
ad purchase, there are still other non-programmatic channels like
direct orders from advertisers who run static campaigns for a certain
number of impressions [12]. �rough these channels, advertisers
target not a user but the entire audience of a speci�c website (e.g.,
an ad regarding Super Bowl on espn.com). Alternatively, if there
is neither a direct order nor a bid in these auctions, the ad-slot may
be �lled via another channel for remnant inventory called fallback
or back�ll (e.g., Google AdSense) [25].

�e process of ad prioritization among the above di�erent chan-
nels and ad networks in waterfall is managed through the pub-
lisher’s ad server or Supply Side Platform (SSP) (e.g., DoubleClick
for Publishers (DFP)). Priorities are typically set not at real time but
based on the average price of the past purchases for each channel.
As a consequence, in waterfall not all ad partners have the ability
to compete simultaneously. �erefore, the publishers do not get the
optimal charge price, since an ad-slot may not be sold at the highest
price (e.g., if the winning bid in the auction of ad network #1 is
0.2$, the ad-slot will be sold even if there was a bid of 0.5$ in ad
network #2). Apart from the potential loss of revenue for the pub-
lishers, there is also a signi�cant lack of transparency. Except from
the winning bidder, the publishers do not know who else placed
a bid for their ad-slot and for how much. In addition, the lack of
control restricts the publishers from choosing Demand Partners, or
di�erent sale channels in real time (e.g., to get a high price through
RTB when the quota of direct ads sold has not yet been depleted).

To remedy all the above, Header Bidding [55] (or parallel bidding
in mobile apps [42]) has been recently proposed and has started to
gain wide acceptance among publishers [20, 23, 36, 52]. As depicted
in Figure 1, HB is a di�erent auction that takes place not on the ad
server as in waterfall, but inside the header �eld of a HTML page,
before anything else is loaded on the page. It allows a publisher to
simultaneously get bids from all sale channels (e.g., direct orders,
programmatic auctions, fallback) and Demand Partners (e.g., DSPs,
ADXs, ad agencies). HB not only gives the control back to the
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Figure 1: High level overview of the HB. �e absence of priorities
aims to provide (i) fairness and higher competition among advertis-
ers and (ii) increased revenue for the publishers.

publisher but also allows higher revenues than waterfall, since
it guarantees that the impressions with the higher price will be
bought and rendered [10]. On the advertiser’s side, HB promotes
fairness since there are no priorities. Consequently, any advertiser
could win any auction, as long as it bids higher than others. HB
enables small advertisers to also be competitive, compared to big
advertisers who would have higher priority on the waterfall model.

Although there is a lot of research regarding the waterfall stan-
dard [5, 6, 34, 35, 41], we know very li�le about the innovative
and rapidly growing alternative of HB. How is it implemented?
What is the current adoption of HB on the Web? What is the per-
formance overhead and how it a�ects the page rendering time?
How many bids the average publisher can receive? What are the
average charge prices and how do these compare to the ones of
the waterfall standard? Which are the big players and how is the
market share divided?

To respond to all these questions, we study the di�erent existing
implementations of HB and we design HBDetector : a novel method-
ology to detect HB auctions on the Web. Our approach aims to
increase transparency on the ad-ecosystem, by exposing at real-
time the internals of the new and rapidly growing HB ad protocol:
in which sites it exists, the prices and partners involved, etc. Using
HBDetector , we crawl a number of popular websites, we collect
a rich dataset of HB-enabled websites. Our tool helps us detect
particular browser events triggered by the HB libraries embedded
in such webpages, along with the ad partners participating in the
HB and metadata for the auctions executed on these websites. We
analyze and present the �rst full-scale study of HB aiming to shed
light on how this innovative technology works and investigate the
trade-o� between the overhead it imposes on the user experience
and the average earnings it brings to publishers. In this paper, we
make the following main contributions:
(1) We propose and implement HBDetector , the �rst of its kind

Web transparency tool, capable of detecting HB activity at real-
time, on the Web. We provide it as an open-sourced browser
extension for Google Chrome1 .

1h�ps://www.github.com/mipach/HBDetector
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Figure 2: Flow chart of the Header Bidding protocol.

(2) By running HBDetector across 35,000 top Alexa websites, we
collect a dataset of 800k auctions. �is work is the �rst to
analyze the adoption and characteristics of HB.

(3) We extract a set of lessons on HB: (i) �ere are 3 di�erent
implementations of HB: Client-side, Server-side and Hybrid
HB. (ii) �ere is at least 14.28% of top websites that use HB. (iii)
Publishers tend to collaborate with a small number of Demand
Partners, which are already reputable in the waterfall standard.
(iv) HB latency can be signi�cantly higher (up to 3× in the
median case, and up to 15× in 10% of cases) than waterfall.

2 BACKGROUND ON HEADER BIDDING
In this section, we cover background knowledge required for our
study regarding the most important aspects of HB.

2.1 HB Protocol Description
Contrary to the traditional waterfall standard, in HB the ad auction
does not take place in a remote ADX, but on the user’s browser.
�e HB process, depicted in Figure 2, is the following:

Step 1: When a user visits a website, the HTML page is fetched.
As soon as the header of the HTML is rendered in the browser,
user tracking code and the third-party library responsible for the
procedure of the HB is loaded as well.

Step 2: �en, the HB library sends (in parallel) HTTP POST
requests to the Demand Partners (e.g., DSPs, ad agencies, ADXs
which conduct their own RTB auctions) requesting for bids. �ese
bid requests also include information about the current user (such
as interests and cookies). Such information can be used by the
Demand Partners to decide whether and how much they will bid
for an ad-slot in the particular user’s display. Note, that if a Demand
Partner does not respond within a prede�ned time threshold, its
bid is considered late and not taken into account.

Step 3: As soon as the Demand Partners respond with their
bids (and their impressions), the collected responses are sent to
the publisher’s ad server. �e ad server will check the received
bids and compare with the �oor price agreed with the publisher, to
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decide if the received prices are high enough [54]. If the �oor price
is met, the HB process was successful and the ad-slot is satis�ed.
Alternatively, the ad server can check the rest of the programmatic
(or not) available channels (e.g., direct order, RTB, fallback) and will
�nd the best next option for the speci�c ad-slot. �is step entails
communicating with SSPs for available direct orders which can
provide higher revenues to the publisher than regular RTB auctions.
�e ad server can also communicate with Demand Partners for
RTB auctions, or other SSPs who can provide fallback ads, such as
Google AdSense, or even house ads.

Step 4: As soon as the impression is rendered on the user’s
display, a callback HTTP request noti�es the winning Demand
Partner that its impression was rendered successfully on the user’s
browser, and the ad price that was charged (winner noti�cation).

In theory, with this new protocol, the publisher has total control
over the ad inventory they provide, knowing exactly how much the
Demand Partners value each slot, and the actual amount of money
they are willing to pay for it. In addition, there is full transparency,
since the publisher can have access to all bids and decide at real
time the best strategy it should follow without the need to trust
any intermediaries. In the future, HB could provide the means to
publishers to reduce advertising that is not suitable for, or does not
match the semantics of their websites, and even curb malvertising.
However, as we will show later in Section 4, this transparency and
control is not always applicable under the various types of HB we
have detected.

2.2 HB Implementation & Performance
To implement the above protocol, publishers need to include HB
third-party libraries in their webpages. Although there does not
exist a common standard for HB yet, the great majority of publish-
ers use the open-source library of Prebid.js [45], supported by
all major ad companies. �is library includes: (i) �e core com-
ponent which is responsible to issue the bid requests and collect
the responses, which are later sent to the publisher’s ad server.
(ii) �e adapters which are plugged into the core and provide all
necessary functionality required for each speci�c Demand Part-
ner. Prebid.js is supported by more than 200 Demand Partners
(e.g., AppNexus, Criteo, OpenX, PulsePoint) that provide their own
adapters [44].

We note that in traditional waterfall, the auction information is
opaque to the client and the only information that can be inferred
(if at all) is through the parameters of the noti�cation URL (which
acts as a callback to the winning bidder). In contrast, in the HB, and
due to bidder responses, browser DOM events are triggered that
contain metadata directly available at the user browser, and can be
used to clearly distinguish between waterfall and HB activity.

�e non-hierarchical model of HB produces much more network
tra�c than the waterfall standard. Indeed, HB sends one request
for each and every collaborating Demand Partner. �is can result to
an increased page latency, especially when some Demand Partners
take too long to respond. To make ma�ers worse, as soon as they
receive a bid request, some of these Demand Partners may run their
own auctions inside their ad network, with their own a�liated
bidders (as depicted in Figure 1). �is increased page latency raises
signi�cant concerns. Indeed, 40% of the publishers already mention

that such latency is capable of impacting their users’ browsing
experience [8, 9, 15].

It is worth noting, that HB technology is still in its early stages
and many ad networks are technologically not ready to move com-
pletely from the waterfall model to participate in this new model.
In order not to miss bids from such networks, some ad mediators
(e.g., Appodeal) mix the two techniques in an a�empt to provide
waterfall compatibility during this transitional period [42].

3 METHODOLOGY FOR MEASURING HB
In this section, we outline our methodology for detecting HB on
webpages, and our e�ort to crawl top Alexa websites for HB activity.

3.1 Detection Mechanism
In order to detect if a webpage is using HB for delivering ads to its
users, we need to detect HB-related activity originating from the
said webpage. As explained above, the HB activity is performed
over di�erent channels than ad protocols such as RTB, using a
library (implemented in JavaScript) embedded in the header of
the page. �erefore, by monitoring the events triggered by such
libraries, we can con�dently distinguish HB activity from other
models such as waterfalling.

�ere are three main ways to detect if HB is present in a webpage:
(1) Perform static analysis of the page and identify tags of

scripts that load known HB libraries.
(2) Detect DOM-related events that are triggered due to HB

embedded in the webpage.
(3) Detect web requests sent from the page to HB entities.

�e �rst method is straightforward to implement with the fol-
lowing steps: Download the webpage source code and use regular
expressions to detect all known HB libraries. However, we note
that just detecting these libraries is not enough, as false positives or
false negatives could occur. For example, static analysis is prone to
false positives such as non HB libraries being misnamed using HB-
related names, or HB-related libraries appearing in the HTML code
but not executed Similarly, static analysis is vulnerable to false neg-
atives such as renamed HB libraries to names that are not known
yet, or new HB libraries that do not match our HB-related keywords
from known libraries. To avoid such potential false positives and
negatives, we chose not to use static analysis in the HBDetector .

�e second method is more di�cult to implement, but o�ers
be�er detection rates with reduced false positives and negatives,
and thus, harder to evade. �is method monitors the DOM events
that are triggered in a webpage, events that are sent to notify the
code of interesting activity that has taken place on the page. Events
can represent everything from basic user interactions to automated
noti�cations happening on the page. Most HB libraries trigger
events in several phases of an auction (initiation of the auction, bid
collection, winning bidder, etc.). If such an event is detected, we
are certain that it is because of HB. Even be�er, by “tapping” on
these events [33], we can collect information about HB that the
�rst method is not able to detect.

�e third method is similar to the second, but operates at a
di�erent level in the browser: monitor the web requests of a page
in real-time, and detect all the request sent to and received from
known HB Demand Partners. By constructing a list containing all
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the known Demand Partners, we can check all the incoming and
outgoing WebRequests to the browser, and keep the relevant to HB.

In this paper, we implementedHBDetector , a tool which combines
the 2nd and 3rd methods to increase detection performance. An
overview of the tool is illustrated in Figure 3. HBDetector adds a
content script in the header of each webpage when the page is
loaded. �is script monitors the webpage’s activity for various
events and requests sent and received by the page, keeping the
ones relevant to HB (e.g., incoming responses from DSPs for HB
auctions). When such DOM events are triggered (which is a �rst
sign of HB activity), the tool �lters the web requests triggering
these events by checking the parameters included in them. HB
libraries use prede�ned parameters such as “bidder”, “hb partner”,
“hb price”, etc., which are not used by other ad-protocols such as
RTB. �us, the tool keeps all web requests that triggered a DOM
event of a HB library, and also include HB parameters. It then
proceeds to extract the values from these parameters for analysis.
�ese parameters are typically �xed for each HB library, and all
HB partners must use them as such, to participate successfully in
HB auctions with that library. In contrast, in the RTB protocol, the
parameter names used in the noti�cation URLs are DSP dependent
and do not utilize DOM events.

From the available HB libraries, we examined prebid.js (and its
variants), being the most famous one (64% of client-side wrappers
are built on prebid [28]), as well as gpt.js and pubfood.js libraries
for their available codebase and/or documentation. We decided to
focus our more in-depth reverse-engineering on prebid.js due to
its popularity, available documentation and open-source code and
APIs [24, 43]. By performing code and documentation analysis for
the HB libraries that have such material available, we identi�ed the
following list of HB events that our tool can detect:

• auctionInit: the auction has started
• requestBids: bids have been requested
• bidRequested: a bid was requested from speci�c partner
• bidResponse: a response has arrived
• auctionEnd: the auction has ended
• bidWon: a bid has won
• slotRenderEnded: the ad’s code is injected into a slot
• adRenderFailed: an ad failed to render

Table 1: Summary of collected data by crawling top Alexa webpages
using the HBDetector for HB-related activity.

Data Volume
# of websites crawled 35,000
# of websites with HB 4998
# of auctions detected 798,629
# of bids detected 241,392
# of competing Demand Partners 84
# weeks of crawling 5

In this work, we focus on three of these events: auctionEnd,
bidWon, and slotRenderEnded. �e auctionEnd, as its name states,
is triggered a�er the auctions for the ad-slots have �nished, i.e.,
the Demand Partners have submi�ed their o�ers. �e bidWon
event is triggered a�er the winning Demand Partner has been
determined. Finally, the slotRenderEnded event is triggered when an
ad has �nished rendering successfully on an ad-slot. By analyzing
these events, which can only be triggered by HB activity and not
other libraries, we were able to collect several metadata about the
auctions, such as the Demand Partners who bided, the ones who
won, the CPM (cost per million impressions in USD) spent, the ad
size, currency, dimensions, etc.

We also constructed a list with all the known HB Demand Part-
ners. We collected and combined several lists used by HB tools
designed to help publishers �ne tune their HB on their websites.
Using this list, we can infer all the WebRequests about HB with-
out altering them, in order to detect when a request to a Demand
Partner is sent, and when an answer is received. �e HBDetector is
wri�en in a few hundred lines of JavaScript as a Google Chrome
browser extension.

HBDetector limitations: �e tool does not analyze all libraries
used by the HB ecosystem due to unavailability of documentation
and/or code. Also, it cannot capture new DOM events if they get
added to existing libraries it is analyzing. Finally, it cannot capture
current DOM events if the events change format or parameters they
are using. In addition, the tool does not capture waterfalling RTB
activity, and therefore, does not allow direct comparison of the two
protocols with respect to Demand Partners involved, ad-prices, etc.
We plan to address these limitations in a future version of the tool.

3.2 Data Crawling
We used our tool to detect which websites employ HB, by crawling a
set of websites, based on a large top list purchased from Alexa [3] on
01/2017. Given the changes anticipated in such website ranking list
and especially in its long tail [48], we focus on the head of the Alexa
list, to capture a more stable part of the ranking distribution through
time. Due to equipment, network and time costs, we limited this
list to 35,000 domains to crawl per day, during Feb’19. To con�rm
the representativeness of this older list, we compared it with the
top 35k domains in 2017-2019 from [48], and found that it has an
overlap of 78.36%(06/2017), 62.10%(06/2018), 58.36%(02/2019) and
55.34%(06/2019).

We used selenium and chromedriver loaded with HBDetector in
order to automate the crawling. We initiated a clean slate instance
before visiting each website, in order to keep the crawling process
stateless (no previous history, no cookies, no user pro�le). When a
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Figure 4: Header Bidding adoption in the last six years for the top
1k Alexa websites of every year.

webpage is visited, the crawler waits for the page to be completely
loaded, and then allows an extra �ve seconds, in case additional
content needs to be downloaded or pending responses to be con-
cluded. We set the page load timeout to 60 seconds, so that if the
page is not fully loaded in one minute, the crawler proceeds to the
next webpage in the list, a�er killing the previous instance and
initiating a new, clean instance.

With this crawling process, we detected HB in ∼5,000 (14.28%)
of the websites, in a well-distributed fashion. In particular, HB
was found in 20-23% of the top 5k websites, 12-17% for the top
5k-15k, and 10-12% for the rest. Indeed, new top websites not
included in this 35k list may have already adopted HB, leading to
an underestimation of today’s adoption rate. However, as found in
our results in Sec. 4.1 were we use top 1k Alexa lists for 6 years,
we show similar HB adoption rate with the head of the top 35k list,
giving credence to our results. �en, we crawled these 5k websites
every day for a period of 34 days in Feb’19, collecting metadata
about the HB auctions, and performance exhibited from the various
websites using HB. In Table 1, we provide a summary of the data
collected.

We note that we detected 800k auctions but received 241k bids.
One could expect that each auction should have at least a bid. Indeed
this would be the case if actual users were involved and Demand
Partners were interested in them. However, there are cases where
bidders may avoid bidding when they know nothing about the user.
In our case, we are interested in the vanilla case using a clean state
crawler and no real user pro�les.

4 THE 3 FACETS OF HEADER BIDDING
In this section, we analyze the crawled data and present results and
observations we have made about the HB adoption over time and
types of HB we identi�ed from our exploration.

4.1 Header Bidding Adoption
Since this is a new programmatic ad-protocol (standardized in
2014[7]), we explore the general adoption of HB through the last
6 years. To do that, we downloaded snapshots of selected lists of
webpages using the Wayback Machine [29]. Due to the involved
network and time cost to crawl from the Wayback Machine, we
focused on the top 1,000 publishers based on Alexa rankings, made
available in a recent study [48] and h�ps://toplists.github.io/. �e
list of top publishers was selected on a �xed day per year (6/6/2019,

6/6/2018, etc.). Since these historical webpages were static, we per-
formed a static analysis looking for HB libraries and components in
their websites’ code. Someone could also try an analysis using the
HBDetector , by a�empting to render each website, or even �nger-
printing the libraries. However, such analyses: i) Take more time
to execute than static analysis. ii) �e webpage must be renderable
and its components must work (scripts should be downloadable,
scripts should not fail to run, the page should not call unresponsive
servers, etc.). �erefore, dynamic analysis cannot be applied on
historical pages “played back”, with potentially deprecated libraries
or other scripts embedded, third-party partners not responding,
etc., and expect 100% correctness on the results collected.

Figure 4 shows the yearly breakdown of HB found in these
websites. Interestingly, we observe a steady increase of the HB
adoption. About 10% of these websites were early adopters and
started using HB 6 years ago. A�er the breakthrough of 2016, when
HB became popular[49], there is a steady 20% of the websites using
this ad protocol. �ese adoption rates, and the general rate of 14.28%
in the 35k list, match industry-claimed numbers of ∼15% in the last
15 months (14.66% in Jan’18 - 15.84% in March’19, computed for the
top 1k out of 5k top Alexa websites that serve programmatic ads)
for the US market [19, 28].

We note that HBDetector catches 100% of the HB activities for the
libraries analyzed. Indeed, there are websites which could be using
HB libraries that we didn’t analyze at the time of data collection, and
therefore were not �agged as HB-enabled websites. �is means we
get 100% precision but not 100% recall. However, the HB adoption
experiment using the 1k lists shows a rate that aligns with the
overall HB adoption rate in the 35k list, and these two rates closely
match what industry is claiming. �ese observations point to low
false positive and negative rates, and that the data collected by
HBDetector (i.e., using dynamic analysis) have high recall rate and
provide a representative picture of the HB ecosystem at the time of
each crawl.

4.2 Types of Header Bidding Detected
Our in-depth investigation of the HB ecosystem and the data col-
lected revealed that this new programmatic ad protocol is currently
being deployed in three facets: (i) Client-Side HB, (ii) Server-Side
HB, and (iii) Hybrid HB. �is �nding matches the 3 types of HB
wrappers (client-side, server-side and hybrid) suggested by indus-
try reports [26]. In the Client-Side HB and Hybrid HB models, the
ad auctions are transparent, so we can distinguish them with a
high degree of certainty due to the events sent and received by
the browser. On the other hand, on Server-Side HB model it is
less clear, since most of the ad-related actions happen at the server.
However, a�er inspecting the responses received by the browser,
we can discover the parameters referring to HB (e.g. hb partner,
hb price, etc.). Next, we analyze each facet, including the steps
taken for the protocol’s execution, and potential consequences it
may have.

4.3 Client-Side HB
In Client-Side HB, as the name implies, the HB process happens in
the user’s browser. As illustrated in Figure 5, during this HB type,
the user’s browser executes 8 steps, including the initiation of the

https://toplists.github.io/
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Figure 6: Server-Side HB overview and steps followed.

HB auction, receiving of bids from Demand Partners and notifying
the winning partner. Client-Side HB’s main goal is to improve
fairness and transparency. Publishers can choose the Demand
Partners they want to collaborate with, regardless of their market
cap. What ma�ers is if their bids are competitive enough. Also,
because the whole HB process is performed at the client side, and
then sent to the publisher’s ad server, it is completely transparent
to the publisher and, in theory, to the user.

�e publisher can know at any time which partners bid, for
which ad-slots they were interested, how much they were willing
to pay, etc. On the down side, Client-Side HB is harder to set up.
Publishers need to have good technical understanding to set up
and tune their HB library. Also, they need to operate their own ad
server, a task which is not trivial. Finally, because of the increased
number of messages to be exchanged, or due to a bad con�guration
in the HB library, longer latencies may be observed.

From the regular end-user’s point of view, the only thing that can
be observed is an increased latency for the loading of the webpage
when it employs Client-Side HB. However, the regular user cannot
be aware of all the HB (and other ad-tech) activity happening in the
background. �is is where our HBDetector tool can help increase
transparency of the protocol from the point of view of the end-user,
and measure non-obvious aspects such as the communication and
time overhead for the browser during HB, winning bids, etc.

4.4 Server-Side HB
In Server-Side HB, a single request is sent to a Demand Partner’s
server, which is responsible to do the whole HB process and send
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(2) Receive 
website’s
 header

(5) Send available ad slots
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client side bids
(7) Receive 
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DSP SSP
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Figure 7: Hybrid HB overview and steps followed.

back to the client only the winning impressions. As Demand Part-
ners, in this scenario, we consider all possible ad partners (SSPs,
DSPs) that take part in the auction. Figure 6 shows the Server-Side
HB model and the steps performed by the user’s browser. �e
careful reader will note a similarity of this model with Client-Side
HB with one Demand Partner. To distinguish Server-Side HB from
Client-Side HB, we check the responses sent back from the Demand
Partner involved to the browser, to �lter out bid responses (which
would reveal Client-Side HB cases). �is �ltering using HB-related
keywords, also ensures that we are not mixing HB with traditional
waterfall activity. Obviously, in this model the publisher needs to
trust that the Demand Partner (i.e., the server handling all requests)
is honest, will not execute waterfall in the backend instead of HB,
and will select the best bids as winners, thus providing the best
possible pro�ts to the publisher.

Server-Side HB requires the least e�ort from the publishers to
setup their HB. However, in exchange for setup convenience, it
reduces transparency to the minimum, since the publishers have no
way of knowing the Demand Partners participating in the auctions
or their actual bids. Publishers don’t need to tune their library,
nor set up an ad server. �ey just add to their webpage a pre-
con�gured library, provided by the Demand Partner they choose
to collaborate with. Also, this setup could make small players less
competitive, compared to big ones with be�er infrastructure and
higher in�uence to the market, because publishers could tend to
trust the la�er ones. In e�ect, the Server-Side HB has re-enabled
the dominant players in RTB to regain control of the ad-bidding
process which was momentarily transferred on the user browser.

From the end-user’s point of view, this setup lacks transparency
and does not o�er many insights on how the whole HB process
either works, performs, or what impact it has on the user’s browser:
all auctions are done in the background, at the ad server’s side. �is
setup brings back the pros and cons of the typical RTB with ADXs
playing the crucial and controlling role in the protocol.

4.5 Hybrid HB
As its name states, this is a hybrid model that combines Client-Side
HB with Server-Side HB (Figure 7). In this model, the user fetches
the webpage which then requests bids from independent Demand
Partners (as in the Client-Side HB model). When the browser (HB
library) receives the bid responses, it sends them to the ad server
along with the available slots. �e ad server then performs its own
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auction (as in the Server-Side HB model) and picks the �nal winning
impression(s) from all collected bids (both from client and server
side). �is model tries to combine the pros of Client-Side HB and
Server-Side HB, while avoiding their cons. It is a semi-transparent
model with a certain degree of fairness, which requires a moderate
degree of e�ort for the setup. Publishers can choose the Demand
Partners they will collaborate with directly, so they can know the
bids they are willing to pay. Also they don’t need to operate their
own ad server, so the programmatic e�ort is reduced to tuning with
the selected Demand Partners.

4.6 Facet Breakdown
�e 3 facets of HB that we observed and described above, have the
following breakdown as detected from the HBDetector in the wild
(no other cases were observed that could comprise a 4th category).
We �nd that the Server-Side HB currently comprises the larger
portion of the market with 48%. �en, the Hybrid HB is second
with 34.7%, and the Client-Side HB is third with 17.3%. �is means
that publishers prefer the centralization and control o�ered by a
server-side (or hybrid) model, which imposes a smaller overhead
and increases speed of transactions.

Indeed, the actors that provide both HB and waterfalling options
need to respect the protocols’ guidelines, otherwise they won’t
participate successfully in the HB process. Depending on the model
they are called to use in each auction, they have to use the appro-
priate noti�cation channel and parameters to notify the browser.
As we will see in the next section, this highly skewed breakdown
towards server-side or hybrid is due to the presence of Google’s
DFP, which participates in many of these HB auctions.

5 ANALYZING THE HB ECOSYSTEM
Here, we analyze the data crawled in di�erent dimensions:

• Number, diversity and combinations of Demand Partners
participating in HB (Section 5.1)

• Latencies measured with respect to overall HB process,
publishers and participating partners (Section 5.2)

• Auctions performed, bids received, bids taken into account
or got lost (Section 5.3)

• Properties of ads delivered: ad-slot prices paid and com-
parison with RTB prices. (Section 5.4)

5.1 Demand Partners Involved in HB
As a next step, we examine the properties of Demand Partners
across the websites crawled and investigate who are the dominant
Demand Partners, how many participate per website, and how they
are combined together per webpage.
Who dominates the market?
First, we examine the popularity of each Demand Partner across
all websites. We de�ne as popularity the percentage of sites that a
given Demand Partner participates in the site’s HB process. In total,
we �nd 84 unique Demand Partners. Figure 8 shows the 11 most
popular Demand Partners. As we can see, Google’s DoubleClick
for Publishers (DFP) is the most popular partner, with more than
80% of publishers utilizing it. �e DFP can be used both as an ad
server and as a server-side HB solution. �us, it is not strange that
most of the publishers choose this option over se�ing their own ad
server. We can also see that the list of top Demand Partners is full
of popular partners that can be found also in the waterfall standard,
as presented in past works2 [35, 41]. �ese companies have already
invested in the HB protocol and process early on, capitalizing on
their knowledge and market share in RTB, and most publishers
tend to choose these traditional big ad-partners over smaller ones.
How many Demand Partners are typically used?
A website can use more than one Demand Partner during the HB
auction. But given that the more partners used could impact the
loading time of the website, a question is what is typically employed
by publishers. �e number of unique Demand Partners participat-
ing in a HB auction are extracted from the incoming web requests
that trigger corresponding HB events at the browser, and detected
by the HBDetector (see Section 3.1 for details on the detection).
Figure 9 shows the CDF of the number of Demand Partners found
on each website. We can see that more than 50% of the websites
use only one Demand Partner. However, about 20% of the publish-
ers collaborate with 5 or more Demand Partners, and about 5% of
publishers collaborate with ten or more Demand Partners.
Which Demand Partners are typically combined?
Demand Partners can appear on a website in di�erent combinations.
Given that we already identi�ed 3 types of HB setup (client-side,
server-side and hybrid), it is interesting to see how publishers select

2AppNexus, Index, Amazon, Rubicon, OpenX, AOL, Criteo, Pubmatic, and Sovrn, which
match exactly what the industry claims as the top HB bidders in Aug’19 reports [28]
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Figure 13: HB latency Vs. domain popularity with respect to Alexa
ranking (in bins of 500 websites). Some outliers that goes as high as
10 seconds (removed for clarity).

di�erent Demand Partners to participate in their HB auctions. We
should keep in mind that the mixture of partners selected can impact
the performance of HB with respect to delays and prices achieved.
Also, frequently selected combinations may reveal typical or unlike
competitions between Demand Partners. �erefore, we analyze the
common combinations of Demand Partners found on webpages,
and show the top 15 with respect to popularity in Figure 10, out of
753 possible groups of competitors found.

As expected, DFP holds a majority of the market on its own (i.e.,
appearing without any competitors) in 48% of the cases. Interest-
ingly, besides DFP which dominates the market as single-partner,
common groups of competitors include DFP in 51% of groups found.
Furthermore, Criteo and Yieldlab follow as single partners with
2.37% and 1.68%, respectively. Some popular pairs of competitors
include DFP and other companies such as Amazon, Criteo, and
AppNexus. Finally, some triples include the above pairs with added
entities such as Rubicon, OpenX, etc.
Which Demand Partners are used in each HB facet?
Given the three HB facets, we anticipate that some Demand Partners
and publishers will prefer one facet of HB over another. �erefore,
we analyze the participation of Demand Partners into each type,
in Figure 11. In contrast to Client-Side HB, which all the bidders
are transparent to the client, in Hybrid and Server-Side HB this is
not the case. For this reason, we analyze the responses from the ad
server (most commonly the DFP) to �nd the partners who won the

auctions. As expected, big DSPs like AppNexus and Rubicon hold
the highest shares, followed by Index Exchange.

5.2 Header Bidding Latency
In this section, we explore various aspects of Header Bidding such as
the imposed latency measured from di�erent vantage points, with
respect to overall latency, publishers using it, number of partners
participating, etc. In all whiskers plots, we show 5th and 95th
percentiles, and the boxes show 25th and 75th percentiles, with a
red line for median (50th percentile).
How much latency does HB add?
�e total latency of HB on a publisher’s webpage is de�ned as the
time from the �rst bid request to a Demand Partner (step 1 in Fig. 2)
until the ad server is informed and responds (step 3 in Fig. 2). In
Figure 12, we show the total time needed from the HB to process
the bid requests and responses. We see that the median latency is
about 600ms (point 1 in �gure). However, some websites su�er a
much higher overhead. Indeed, about 35% percent of the websites
observe more than one second of latency, and as much as 4% of
websites observe more than 5 seconds of latency for the HB process
to conclude.

Based on our description so far, one might expect that a timeout
would be used during HB, to cut o� responses from slow Demand
Partners. Although many of the wrappers use a timeout of 3 sec-
onds, publishers are able to set their own threshold by making some
changes in the wrappers. Unfortunately, our results indicate that at
least 10% of the websites exceed the threshold of 3 seconds (point
2 in Figure 12), and some even need 20 seconds before the HB is
completed (not shown in the �gure for clarity of the other results).

Overall, even though most of the HB libraries strive to perform
HB activities in an asynchronous fashion, it appears that HB can
add signi�cant overhead to a website if the library is badly tuned
and Demand Partners are slow to respond. In a recent report [11],
the average page load time (PLT) of a webpage was measured at
8.66 seconds, which is above the median latency measured here for
HB. However, the industry recommends that the PLT should be
kept under 3 seconds [11], which would lead 10% of websites with
HB auctions experiencing time delays above this recommendation.
Does publisher popularity associate with HB latency?
As a next step, we study the latency measured with respect to
the ranking of each website. Someone could expect that highly



Pi
xim

ed
ia

On
eT

ag
Ju
stp

re
m
ium

St
ick

yA
ds
TV

W
ide

sp
ac
e

Po
lym

or
ph

Yi
eld

lab
Gj
ira
fa

At
om

x
Yi
eld

bo
t

DF
P

Ap
pN

ex
us

Ru
bic

on
Cr
ite
o

In
de

x
Am

az
on

Op
en

x
Pu

bm
at
ic

AO
L

So
vr
n

Sm
ar
t

Tr
ion

Ad
Oc

ea
n

Fi
de

lity C1
X

Yi
eld

on
e

Aa
rd
va
rk

In
nit
y

Br
idg

ew
ell

Ga
m
m
a 
SS

P
Ad

ge
ne

ra
tio
n

0

500

1000

1500

La
te
nc

y (
m
s)

Figure 14: HB latency for the fastest partners (le�-side
of plot), top partners in market share (middle-section
of plot), and slowest partners (right-side of plot). Top
partners in market share are not the fastest.
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Figure 15: Total HB latency (le� y-axis)
and % of websites found (right y-axis) vs.
number of Demand Partners per website.
Publishers with more than one partner
tend to have higher page load times.
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Figure 16: Distribution of latencies ob-
served per Demand Partner across all
the websites. Partners are ranked based
on popularity. Popular partners tend to
have latencies with smaller variability.

ranked publishers seek to have lower latencies for their websites,
and therefore add partners in their HB process who demonstrate
lower latencies. Also, higher-ranked websites may have available
more resources to use in their HB planning, which could lead to
reduced latencies and be�er performance. In Figure 13, we show the
latency of publishers vs. their Alexa ranking. Indeed, we �nd that
the highest-ranked publishers (i.e., the �rst 500 websites) exhibit
signi�cantly lower latencies (median = 310ms), than the rest of the
ranked websites (median = 500ms).
Which are the fastest and slowest Demand Partners?

Figure 14 shows the fastest, top and slowest Demand Partners,
respectively. We notice many small or unknown Demand Partners
in these lists. �e fastest (slowest) Demand Partners have median
values in the range of 41-217ms (646-1290ms). Interestingly, the
top Demand Partners with respect to market share have latencies
that are small, but not low enough to qualify them for the fastest
partners (with the exception of Criteo which has a median latency
under 200ms).
DomultipleDemandPartners impactHBprotocol’s latency?
As we mentioned earlier, a publisher may choose to use several
Demand Partners at the same time. Although this decision may
increase competition for the ad-slots o�ered, and can drive-up
the bidding prices, and consequently the publisher’s revenue, it
may also increase the latency of the webpage to load on the user’s
browser, and decrease the quality of the overall user experience.
�erefore, we explore the impact that the number of Demand Part-
ners can have on the user experience with respect to latency.

Figure 15 shows the latency of websites vs. the number of De-
mand Partners each website has. We observe that publishers who
use only one Demand Partner have a small latency of 268.2 ms.
As can be seen by the second y-axis, this is the majority of web-
sites. Also, publishers with two Demand Partners have a latency of
1091.6 ms. Publishers with more than two Demand Partners have a
median latency in the range of 1.3-3.0 seconds. Does HB partner
popularity associate with HB latency?
Next, we study the latency of all 84 Demand Partners detected,
ranked based on their popularity in our dataset. In Figure 16, we
show the distribution of latencies observed per partner, when com-
puted across all the websites each partner was found. We observe

that the most popular partners tend to have latencies with smaller
variability (up to 200ms), in comparison to the less popular partners
who may exhibit latency variability up to 500-1,000ms.
How many bids are late?
Here, we analyze the portion of bids that arrive too late to be
included in the auction. As late bids we de�ne all the responses
about bids from Demand Partners which arrive too late, i.e., a�er
the request to the ad server is sent from the browser. �us, it is
important to understand what is the portion (and number) of bids
that were received from the browser, that came too late and were
not considered in the HB auction. In Figure 17, we show the CDF
of the portion of such late bids with respect to the total number of
bids received at a website for the HB auction. We see that in 50% of
the cases with late bids, almost 50% of the bid responses come too
late to be considered in the auction by the ad server. Also, for 10%
of the auctions, more than 80% of the bids are late. In results not
show here due to space, we measured that in 60% of the auctions,
there was only one late bid, in 40% of the auctions there was at
least two late bids, and in 20% of auctions at least four late bids.

In Figure 18, we measure the percentage of late bids per Demand
Partner. We notice that 21 Demand Partners bid too late in 50% of
the auctions they participate. In some extreme cases, the Demand
Partner loses 100% of the bids they send. All these late bids point
to the possible loss of revenue from the publisher. �is could be
the result of a poorly de�ned wrapper that sends the request to the
ad server the same time it sends the requests to Demand Partners,
without waiting for their responses �rst, as well as Demand Partners
that do not have the proper infrastructure to respond fast enough
to all incoming requests.

5.3 Auctioned Ad-slots
In this section, we investigate the properties of the auctioned ad-
slots, such as the size, the number of auctions per website, and how
this impacts the overall performance of the protocol.
How many ad-slots are auctioned per webpage?
We start by investigating the number of ad slots that are available
for auction. In Figure 19, we plot the CDF of the number of ad-slots
across the websites, per HB type. In general, and for up to 70% of
websites, the Hybrid HB type auctions more ad-slots than the other
two types. For the other 30% of websites, Server-Side HB auctions
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Figure 18: Percentage of late bids out of all bids
sent per Demand Partner. Some partners have all
their bids arriving too late to be considered for
auction.
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Figure 19: Auctioned ad-slots across web-
sites, perHB facet. �emedianwebsite has
2-6 available ad-slots. 90% of websites have
5-11 ad-slots (depending on the HB type).
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Figure 20: HB latency as a function of the number of ad-slots
auctioned. More ad-slots result in higher median latency and
variability in latency for the HB process.
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Figure 21: Portion of ads for di�erent HB ad sizes, per HB facet. �e
side banner (300x250) and top banner (728x90) are among the most
popular ad-slot sizes in all HB facets.

more ad-slots. �e median website has 2-6 available ad-slots, and
90% of websites have up to 5-11 ad-slots (depending on the HB type).
Also, 3% of the websites provide more than 20 slots for auction.

Requesting bids for 20 ad-slots on a single page can be considered
odd, even a �ag for suspicious or fraudulent behavior. �erefore,
we manually investigated such cases, and to our surprise, we found
that some publishers request auctions for more slots than they have
available for display. A�er investigating this behavior further, we
observed that these ad-slots refer to several di�erent devices and
screen sizes such as for tablet, smartphone, laptop, etc. We speculate
they do that due to either bad con�guration of their wrapper (i.e.,
they use the same HB wrapper for all the devices they serve without
customizing the requests), or because they want to receive bids for
multiple versions of the same ad-slots, for be�er optimization of
the publisher’s HB process later on. Indeed, this odd activity needs
to be studied in depth in the future, to understand if it is a ma�er
of bad practice or an e�ort for ad-fraud.
Does the number of auctioned ad-slots impact latency?
Next, we checked if the HB latency is associated with the number
of ad-slots auctioned. Intuitively, we may expect that the more
slots are to be auctioned, the more time the HB will take. However,
given that a lot of Demand Partners invest signi�cant computing

resources to parallelize and optimize bidding computations, the
above statement may not hold. In Figure 20, we plot the latency of
HB based on the number ad-slots auctioned in the website. In the
majority of cases, this latency includes the communication to the ad
server. In Client-Side HB, we cannot know the ad server (since each
publisher uses their own), so we have no means to infer this latency.
We observe that the total latency tends to increase with the number
of slots auctioned. In fact, when there are 1-3 ad-slots auctioned,
the median latency is 0.30-0.57 seconds, but when the slots are 3-5,
the median latency ranges to 0.57-0.92 seconds. Interestingly, we
observe that even if there is only one ad-slot to be auctioned, the
latency can still vary per auction, from a few tens of milliseconds
to almost two seconds. �is variability can be due to extra latencies
as result of internal auctions occurring at each Demand Partner.
What are the most popular ad-slots auctioned?
Finally, we analyze the most popular dimensions of HB ad slots.
Our �ndings are presented in Figure 21, per facet of HB. �e most
common ad size is the 300x250 (side banner), for all 3 facets. �e
second most common is the 728x90 (top banner) and the 300x600
(for the Client-Side HB). �ese are generally popular banners in
both mobile and desktop advertising, and they match results ob-
served in the past for RTB [41]. Due to the increase of mobile
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Figure 22: CDF of the auctioned ad slots bid prices, per HB facet.
�ese are baseline prices that Demand Partners are willing to spend
when they have no information for the user.
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Figure 23: Distribution of bid prices in CPM per ad-slot size (x-axis
sorted by area of ad-slot). Even in our crawler’s baseline scenario,
partners bid high prices to reach users.

browsing, publishers can choose these speci�c sizes to keep the
HB con�guration simple and well de�ned for multiple devices (as
they don’t need to set multiple sizes for di�erent devices, and fewer
auctions need to occur on the Demand Partners’ side).

5.4 Ad-slot Bid Prices
In this section, we discuss the auctioned ad-slots’ bid prices and
how they vary depending on their size. We were able to detect the
ad prices using HBDetector . In case of Hybrid and Client-Side HB,
most of the prices are transparent to the client and easy to extract
from the bid response messages. In contrast, in Server-Side HB the
prices are not trivial to detect. We analyze in depth the auction
metadata, and based on several heuristics we �nd and extract the
prices whenever they are included.
What are the HB partners willing to pay?
First, we analyze the prices bided by the Demand Partners during
the auctions. In Figure 22, we show the CDF of the baseline bid
prices (in CPM or cost per thousand ad impressions, in USD) that
advertisers are willing to spend for the ad-slots auctioned, per type
of HB. In general, we note that Client-Side HB draws higher bid
prices for the publisher, in comparison to the other two types. Also,
more than 20% of the prices are more than 0.5 CPM, which is lower
but comparable to regular waterfall prices, as claimed in past studies
(found to be ∼1 CPM [41]). Also, we should note that these prices
are baseline, so they are much lower than if they were referring to
targeted users.
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Figure 24: Distribution of prices that partners bid, ranked by popu-
larity of Demand Partner (who are grouped in bins of 10).

What are the HB partners paying per ad-slot?
Second, we compare ad-slot sizes with bid prices for each size. In
Figure 23 we plot the prices (in CPM) for each ad-slot. We see that
in the recorded dimensions, the median cost ranges from 0.00084-
0.096 CPM. �e most expensive ad-slot (based on median price)
is 120x600 with 0.096 CPM. �e cheapest ad-slot is 300x50 (which
also happens to have the least ad-area) with 0.00084 CPM. Also,
the most popular ad-slot size, which is 300x250, has a median cost
of 0.031 CPM. Previous studies on waterfall standard [41] �nd the
prices of 300x250 slot ranging from 0.1 to 1.4 CPM, with a median
of 0.19 CPM. �ese prices are higher than the ones found in our HB
study, but we should again consider that our detected prices are
for baseline users that Demand Partners have no prior knowledge,
whereas in [41] it was for real users. �erefore, a follow-up work
could apply real user pro�les to collect HB prices, and thus, make a
more fair comparison with RTB prices.
What is the variability of bid prices per DSP?
In Figure 24, we plot the prices (in CPM) that each Demand Partner
bid to examine possible association between a partner’s popularity
and how high they bid in HB. �e DSPs are ranked by popularity
and grouped in buckets of 10 to ease illustration. �e most popular
partners (�rst bins) tend to be more consistent and bid lower prices.
In contrast, less popular DSPs have higher median bid prices and
variability in their bids. �is observation could be explained when
considering how the HB market works: for less popular DSPs to be
competitive and win auctions, they bid higher prices than popular
partners to reach su�cient number of users. Alternatively, this re-
sult could also indicate that more popular partners have technology
that detects when browsing is of a baseline (or bot/unknown) user
and therefore do not bid high, whereas the less popular partners
bid high, hoping to target a real user. Finally, it can also be a side
e�ect of how Demand Partners decide to spend their budget across
the websites they collaborate with: more popular partners exist in
more websites, and may chose to bid low in many of them, to cover
a wider range of websites.

6 RELATEDWORK
User data and their economics have long been an interesting topic
and a�racted a considerable body of research [2, 13, 21, 22, 35, 37,
41, 46, 47, 51, 53, 56]. In particular, Acquisti et al. discuss the value
of privacy a�er de�ning two concepts (i) Willingness To Pay: the
monetary amount users are willing to pay to protect their privacy,



and (ii) Willingness To Accept: the compensation that users are
willing to accept for their privacy loss [2]. In two user-studies [13,
51] authors measure how much users value their own o�ine and
online personal data, and consequently how much they would sell
them to advertisers. In [47], authors propose “transactional” privacy
to allow users to decide what personal information can be released
and receive compensation from selling them.

Papadopoulos et al. set out to explore the cost advertisers pay
to deliver an ad to the user in the waterfall standard and RTB
auctions [41]. In addition, they study how the personal data that
users leak while browsing (like location and interests) can a�ect the
pricing dynamics. �e authors propose a methodology to compute
the total cost paid for the user even when advertisers hide the
charged prices. Finally, they evaluate their methodology by using
data from a large number of volunteering users. Olejnik et al.
perform an analysis of cookie matching in association with the
RTB advertising [35] . �ey leverage the RTB noti�cation URL to
observe the charge prices and they conduct a basic study to provide
some insights into these prices, by analyzing di�erent user pro�les
and visiting contexts. �eir results con�rm that when the users’
browsing histories are leaked, the charge prices tend to be increased.
In [39], the authors measure the costs of digital advertising on both
the user’s and the advertiser’s side in an a�empt to compare how
fairly these costs are distributed between the two. In particular,
they compare the cost advertisers pay in the waterfall standard
with the costs imposed on the data plan, the ba�ery e�ciency and
(by using cookie synchronization [1, 38, 40] as a metric) the privacy
of the speci�c user.

In [31], the authors brie�y describe HB and focus on optimizing
its bidding strategy and the produced yield. �ey consider revenue
optimization as a contextual bandit problem, where the context
consists of the information available about the ad opportunity, such
as properties of the internet user or of the provided ad slot. In [21],
authors use a dataset of users’ HTTP traces and provide rough
estimates of the relative value of users by leveraging the suggested
bid amounts for the visited websites, based on categories provided
by the Google AdWords. FDTV [22] is a plugin to inform users in
real-time about the economic value of the personal information
associated to their Facebook activity. In [30], Iordanou et al. try to
detect both programmatic and static advertisements in a webpage,
using (i) a crowdsourcing, and (ii) a crawling approach to determine
the criteria with which ads are displayed. �ey �nd biases on ads
depending on age, income and gender of users.

Bashir et al. study the di�usion of user tracking caused by RTB-
based programmatic ad-auctions [6]. Results of their study show
that under speci�c assumptions, no less than 52 tracking companies
can observe at least 91% of an average user’s browsing history. In
an a�empt to shed light upon Facebook’s ad ecosystem, Andreou
et al. investigate the level of transparency provided by the mecha-
nisms “Why am I seeing this?” and Ad Preferences Page [4]. �e
authors built a browser extension to collect Facebook ads and infor-
mation extracted from these two mechanisms before performing
their own ad campaigns and target users that used their browser
extension. �ey show that ad explanations are o�en incomplete
and misleading. In [5], the authors aim to enhance the transparency
in ad ecosystem with regards to information sharing, by developing
a content agnostic methodology to detect client- and server- side

�ows of information between ad exchanges and leveraging retar-
geted ads. By using crawled data, the authors collected 35.4K ad
impressions and identi�ed 4 di�erent kinds of information sharing
behavior between ad exchanges.

7 SUMMARY & DISCUSSION
Header Bidding is gaining popularity among Web publishers, who
want to regain the control of their ad inventory and what advertis-
ers are paying for it. Proponents of HB have touted that this new
ad-tech protocol increases transparency and fairness among adver-
tisers, since more partners can directly compete for an ad-slot. HB,
in theory, can boost the revenue of publishers, who can select the
Demand Partners that are competing for the publishers’ ad-slots,
and also remove intermediaries from the ad-selling process.

In this study, we investigate and present in full detail the di�er-
ent implementations of HB and how each of them works. Based on
these observations, we design and implement HBDetector: a �rst
of its kind tool to measure in a systematic fashion the evolving
ecosystem of HB, its performance and its properties. By running
HBDetector across a list of top 35,000 Alexa websites, we collected
data about 800k HB auctions and performed the �rst in-depth anal-
ysis of HB. We discuss our lessons from this study in the next
paragraphs.

7.1 Commoditization of Ad Supply
Header Bidding was introduced to put Demand Partners under
pressure for more competitive pricing (and loosen Google’s grip on
the market). Indeed, it has changed the hierarchy on the supply side.
Depending on the publisher’s needs, we found that Header Bidding
can be implemented in 3 ways: (i) Client-Side HB, (ii) Server-Side
HB, and (iii) Hybrid HB. �erefore, Demand Partners that could
previously claim exclusive access to a publisher’s inventory (and
thus higher positions in the waterfall) are no longer able to do so.
Instead, HB enabled all Demand Partners regardless of their size
or relationship with publishers, to compete for the same inventory,
thus commoditizing supply [16].

However, as measured in this study, big companies such as Dou-
bleClick, AppNexus, Rubicon, Criteo, etc., took advantage of their
existing dominance in the ad-market and placed themselves again
in a very centralizing (and process controlling) position within the
HB ecosystem (especially within the Server-Side HB and Hybrid HB
models). In fact, we identi�ed that Server-Side HB dominates this
market with 48% of auctions handled by a single partner/ad server.
Google, in particular, handles as much as 80% of HB auctions. Dou-
bleClick for Publishers (DFP) dominates as a single partner, while it
also appears in 51% of the competing groups of Demand Partners in
HB. Also, most publishers use only one Demand Partner, but some
use many (more than 10). Interestingly, this centralization is in
direct contrast to the publishers’ revenue. We found that websites
utilizing Client-Side HB achieve higher bid prices than the other
two models.



7.2 Non-Viable Performance Overheads
�e fear of latency has kept some premium publishers away from
header integrations and continues to make others wary about em-
bracing HB. Results of this study verify the concerns of publish-
ers [14, 18] regarding the latencies imposed on the user side. We
measured up to 0.6 seconds for the median website and more than
3 seconds in 10% of websites. Furthermore, publishers with more
than one Demand Partner experienced higher HB latencies: one
Demand Partner imposes a small latency of 0.3 seconds, but 2 De-
mand Partners impose 1.1 seconds latency, and 3 Demand Partners
can impose up to 3 seconds latency. It is of no doubt that for the
publishers that do the utmost to provide readers with a high-quality
experience, such latency is capable of signi�cantly degrading the
user experience. Interestingly, we �nd that the top 500 (in Alexa
ranking) websites exhibited signi�cantly lower HB latency than
the rest of websites.

Although Header Bidding tech promises multiple, in-parallel bid
requests to Demand Partners that can provide the best possible ad
price to the publisher, Javascript on the users’ end is single-threaded.
�is means that even if the HB provider’s wrapper performs well-
optimized asynchronous ad calls, these still need to stand in the
network queue, thus increasing not only the overall HB execution
time but also the entire webpage’s loading time. �ese delays can
have adverse e�ects on user’s browsing experience while loading
a HB-enabled webpage. Interestingly, we �nd that the 10 most
popular Demand Partners exhibit lower variability in latency than
the rest, demonstrating that they invest appropriate resources to
reduce latencies at the user-end.

7.3 Late Bids: Revenue & Network Cost
�e broadcasting nature of Header Bidding results in an enormous
amount of bid requests to multiple Demand Partners. As measured
in this study, a typical website has a small number of available
ad-slots (i.e., 2-6 ad-slots for the median case, depending on the
type of HB), but some auctions request for more ad-slots than they
have available to show (even up to 20). Side banner and top banner
are the most popular ad-slots auctioned in HB. For each ad-slot, a
parallel auction takes place that requests bids from numerous DSPs.
As expected, the more ad-slots present in a webpage, the higher the
overall HB latency: when 1-3 ad-slots are auctioned, the median
latency is 0.3-0.57 seconds, but for 3-5 slots, the median latency is
0.57-0.92 seconds.

�is overwhelming volume of bid requests signi�cantly increases
the needed processing power for ADXs and the decision engines
of DSPs, thus skyrocketing their infrastructure costs [17]. Indeed,
companies that started supporting HB experienced increases of up
to 100% in the bid requests they received [50] (i.e., between 5 million
and 6 million requests per second) for the very same number of
available ad-slots as before. Interestingly, the same partners may
in fact compete for the same ad-slots more than once: in the HB,
and then in the regular waterfall model, since the publisher may
still fall back to the waterfall if the HB does not reach high enough
prices for the auctioned slots [17].

Apart from skyrocketing the infrastructure costs, the increased
amount of bid requests also increases the response time for DSPs,
causing lots of delayed bids. We found that in more than 50% of

auctions, half of bid responses arrive too late (a�er the publisher’s
set threshold) to be considered, due to high latency. �ese late
bids not only are wasted network resources and processing power
from the point of view of the Demand Partners, but also loss of
potentially higher revenues for publishers.

7.4 Limitations & Future Work
�e present work is a �rst, comprehensive study of the HB proto-
col, and an e�ort to measure the ecosystem and partners involved.
Unfortunately, HB documentation is scarce at best, and it has been
a feat to reverse-engineer the protocol, and understand the nu-
merous HB libraries used by the crawled websites. Due to several
limitations in the data collection process, in the present study, we
focused on speci�c dimensions and le� others for future work. In a
follow-up work on HB, it is important to address the limitations of
our HBDetector , and also perform extensions to study aspects not
covered in this work:

• Perform extensive analysis of all available HB libraries, to in-
crease coverage of the ecosystem and websites employing HB.

• Study in detail the impact that HB has on the UX and page
load time of each website, as well as the various hosting in-
frastructures responsible for the crawled websites, locations of
Demand Partners involved, and categories of websites to �nd
associations with HB prices and latencies.

• Investigate the privacy of online users accessing HB-enabled
websites for potential PII leaks, and measure the impact that
HB may have on user anonymity, as well as the use of HTTP
vs. HTTPs for HB transactions.
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