
kMVX: Detecting Kernel Information Leaks with
Multi-variant Execution

Sebastian Österlund
∗

s.osterlund@vu.nl
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Koen Koning
∗

koen.koning@vu.nl
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Pierre Olivier

polivier@vt.edu
Virginia Tech

Blacksburg, Virginia

Antonio Barbalace

abarbala@stevens.edu
Stevens Institute of Technology

Hoboken, New Jersey

Herbert Bos

herbertb@cs.vu.nl
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Cristiano Giuffrida

giuffrida@cs.vu.nl
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

Abstract
Kernel information leak vulnerabilities are a major security

threat to production systems. Attackers can exploit them

to leak confidential information such as cryptographic keys

or kernel pointers. Despite efforts by kernel developers and

researchers, existing defenses for kernels such as Linux are

limited in scope or incur a prohibitive performance overhead.

In this paper, we present kMVX, a comprehensive defense

against information leak vulnerabilities in the kernel by run-

ning multiple diversified kernel variants simultaneously on

the samemachine. By constructing these variants in a careful

manner, we can ensure they only show divergences when

an attacker tries to exploit bugs present in the kernel. By

detecting these divergences we can prevent kernel informa-

tion leaks. Our kMVX design is inspired by multi-variant

execution (MVX). Traditional MVX designs cannot be ap-

plied to kernels because of their assumptions on the run-time

environment. kMVX, on the other hand, can be applied even

to commodity kernels. We show our Linux-based prototype

provides powerful protection against information leaks at

acceptable performance overhead (20–50% in the worst case

for popular server applications).

CCSConcepts • Security andprivacy→Operating sys-
tems security; • Software and its engineering→ Oper-
ating systems.

∗
Equal contribution joint first authors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00

https://doi.org/10.1145/3297858.3304054

Keywords operating systems; security; information leaks;

multi-variant exection

ACM Reference Format:
Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Bar-

balace, Herbert Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting

Kernel Information Leaks with Multi-variant Execution. In 2019
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’19), April 13–17, 2019, Providence, RI, USA.ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3297858.3304054

1 Introduction
With millions of lines of code, the operating system (OS) is

typically one of the most complex pieces of software on a

machine. All the research into alternative OS designs and

safer languages notwithstanding, monolithic kernels such as

Linux, Windows, and BSD (all written in unsafe languages),

are still the norm. Unfortunately, such kernels offer a large

attack surface. For instance, the Linux kernel contains a

long list of exploitable bugs [5, 13, 27, 32, 35, 53], with the

most common class of vulnerabilities being that of informa-
tion leaks [27]. Such vulnerabilities allow an unprivileged at-

tacker to extract sensitive information such as crypto keys or

pointers from the kernel. Not only do these bugs compromise

the confidentiality of the kernel, but they are often critical

to subsequent attacks such as privilege escalation [45].

While developers and researchers have proposed numer-

ous defenses and detection tools in response [13–15, 20, 26,

34, 38, 41, 46], their solutions tend to be either too limited

in scope and detection capability, or too expensive in terms

of overhead. For instance, kernel address space layout ran-

domization (kASLR) in its current form only randomizes the

base of the kernel, meaning a single leaked pointer compro-

mises the entire randomization. The built-in KASAN mem-

ory error detector [15] can only detect use-after-free and

out-of-bounds bugs, at the price of a 4x performance over-

head. Meanwhile, kmemcheck [14], another built-in memory

checker, can also detect uninitialized reads, but at the cost of

several orders of magnitude of overhead. More recent efforts,

such as UniSan [26], efficiently mitigate uninitialized reads,

but does not cover all the other information leaks.

https://doi.org/10.1145/3297858.3304054
https://doi.org/10.1145/3297858.3304054

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

In this paper, we present a new technique, called kMVX,

which can efficiently detect arbitrary information leaks by

running multiple diversified kernels simultaneously on the

same machine. These variants are constructed in such a way

that they exhibit the same behavior in normal circumstances,

but show diverging behavior if an attacker tries to exploit

the system. We achieve this by making particular changes

in the memory layout of each variant, which make no differ-

ence during benign execution, but do matter for an attacker

trying to leak information from the kernel. While the vari-
ant generation provides the security, our kMVX design also

requires components to facilitate running multiple kernels

on the same machine and detect the divergences.

The design of kMVX is based on that of multi-variant

execution (MVX) [3, 8, 19, 40, 51]. MVX is a user-level defense

that runs multiple variants of an application side-by-side

and checks their behavior. Traditional MVX synchronization

principles are not applicable to kernels, however, as they

often lack such clear and strict interfaces, can interact with

system resource and hardware directly, and contain many

sources of non-determinism (e.g., task scheduling). kMVX

addresses this challenge by introducing two synchronization

points, called the I/O sync and syscall sync.
We constructed a kMVX prototype based on Linux, which

shows our kMVX design applies to commodity operating

systems and is effective at detecting kernel info leaks. Our

prototype runs multiple Linux kernels on the same machine

while preserving the user space ABI of Linux, allowing ex-

isting applications to run unmodified on the system. Experi-

ments show our prototype has at most 20–50% overhead for

real-world server applications.

To summarize, our contributions are three-fold:

• A design for kMVX that supports running and moni-

toring multiple kernel variants on a single system.

• Multiple variant generation strategies applicable to

the kernel to stop information leaks.

• An evaluation of a kMVX prototype on Linux that

demonstrates its effectiveness and efficiency.

2 Background
OS kernel vulnerabilities Similar to most large projects

written in unsafe languages, the Linux kernel contains a

large number of bugs, with more being discovered—and

even introduced—every month. Despite the numerous ef-

forts to add detection and protection mechanisms, studies

show that there is still a wide variety of bugs present in the

kernel [5, 26]. For instance, in their 2010 study, Chen et al. [5]
identified four major classes of exploits in the Linux kernel:

memory corruption, policy violation, denial of service, and

information leaks. The latter was, and still is, by far the most

dominant class of vulnerabilities [26].

This motivates our focus on information leak attacks in

which attackers abuse such vulnerabilities to induce kernel

struct snd_timer_tread {

int event; // 4 bytes padding

struct timespec tstamp ;

unsigned int val; // 4 bytes padding

};
int snd_timer_user_params (...)
{

struct snd_timer_tread tread ;
tread . event = SNDRV_TIMER_EVENT_EARLY ;
tread . tstamp . tv_sec = 0;
tread . tstamp . tv_nsec = 0;
tread .val = 0;
// Padding uninitialized at this point
// ...
copy_to_user (usr_buffer , &tread ,

sizeof (struct snd_timer_tread));
}

Listing 1. CVE-2016-4569: The compiler adds several

bytes of padding to the struct snd_timer_tread in

sound/core/timer.c. The copy_to_user call will leak

the uninitialized padding bytes to the user.

data to leave the kernel, for instance to be sent over a socket

or copied to user memory. A common cause of such info

leaks are data structures where some fields are uninitialized

before passing it to the network stack or userland. A recent

study shows that some of these info leaks are also present

in data structures where the compiler inserts padding bytes

that are not initialized, both on the stack and the heap [26].

As an example, both CVE-2014-1444 and CVE-2016-4569

concern a data structure allocated on the stack where the

compiler adds padding, and can thus leak information to user

space when called via an ioctl syscall (see Listing 1). If a

previous stack frame contained sensitive data, such as kernel

pointers, these will be copied alongside the data structure.

CVE-2013-2237 is an example where an object is allocated

on the kernel heap without being fully initialized, and then

sent over a socket, again leading to an info leak.

While info leaks themselves may be already harmful, they

are often also used for further attacks. For instance, when

kASLR is enabled, an attacker typically first has to leak point-

ers before mounting more complex exploits. An example is

CVE-2016-0728, a use-after-free bug in the keyring man-

agement. An attacker can force the kernel to de-allocate an

object while it still holds pointers to it. The attacker can

then allocate a new object (of a different type), which the

kernel will interpret as the old object. In this particular case,

an attacker can place arbitrary kernel pointers inside the

object which the kernel will then call, leading to a privilege

escalation. In cases where kASLR is enabled, the attacker

first needs to determine the correct pointers for the last step

of this attack via an info leak.

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

Multi-variant execution kMVX draws from user space

MVX, which has been applied to programs ranging from

servers to graphical applications [3, 8, 12, 19, 36, 37, 40, 52].

The core idea of MVX is to generate variants that have the

same outside behavior (or output) given the same inputs in

normal situations, but start to diverge when an attacker tries

to exploit a vulnerability in the program. A simple example is

running the same program twice with address space layout

randomization (ASLR) enabled. ASLR variations have no

observable effect on the program execution from the outside:

when the same input is applied to both variants they will

return the same output. However, if the application contains

a bug that allows an attacker to trigger a read at a specific

memory location, via a pointer, the application may return

arbitrary memory content, hence we will observe divergent

behavior. To be specific, both variants will receive the same

pointer, but due to ASLR the pointer will most likely have

different contents in each variant.

The security guarantees of MVX and kMVX systems are

determined by the diversification strategies of the variant
generator. The design of MVX and kMVX allows for variant

generation strategies to be swapped and combined, based

on the threat model. Schemes with stronger (deterministic)

guarantees often require large amounts of resources [19] or

introduce compatibility issues [40]. One important insight

for MVX and kMVX is that the amount of entropy itself does

not provide the security (like it does for ASLR), instead the

security comes from the entropy causing some divergence in
execution for attacks. Creating suitable variant generation

strategies for kMVX, that work with the strict requirements

of kernel resources and provide full coverage against infor-

mation leaks, is a key challenge we address in the paper.

When running multiple variants, it is crucial both have the

same view of the outside world to avoid benign divergences.

For MVX this is relatively easy, since user space programs

have a strictly defined I/O interface in the form of syscalls.

For instance, both variants should have the same view of time

and network traffic, which are both accessed via syscalls. The

kernel does not have such an interface, creating a number

of challenges for kMVX, which we address in Section 4.

3 Threat model
MVX in general can be applied to a large number of different

exploits targeting applications. All the related vulnerabilities

can be found in the kernel as well. As kMVX is a new design,

for this paper we primarily focus on attacks on a local system,

where information is leaked via bugs in the kernel code.

We assume a local attacker already in full control of an

unprivileged user space program, who tries to disclose point-

ers or sensitive information (e.g., cryptographic keys) from

the kernel by (repeatedly) interacting with it via syscalls and

exploiting info leak vulnerabilities. We focus on exploita-

tion of such vulnerabilities via software bugs and assume

Hardware

User program

Kernel 1 Kernel 2

Syscall sync

I/O sync

Syscall sync

I/O sync

Vargen
 (compile time)

Figure 1. Overview of the kMVX design. Two kernels run

on the same hardware by controlling interactions with the

hardware via the I/O sync component. Interactions with user

space go through the syscall sync to detect divergences. Var-
gen constructs diversified kernels during compilation.

orthogonal defenses for other attack vectors such as side

channels.

Due to defenses such as kASLR [49], a majority of Linux

kernel attacks rely on leaking information at some stage in

the attack. By eliminating info leaks, we hinder many other

classes of exploits, such as privilege escalation.

4 kMVX: Kernel multi-variant execution
Our design of kMVX runs two co-existing OS kernels si-

multaneously on the same (virtual or physical) hardware.

Each kernel is diversified using our variant generator (var-
gen) to cause divergence for information leaks. Each kernel

includes two components to both keep execution consistent

and check for divergences caused by malicious users: the I/O
sync and syscall sync. These two components are similar in

spirit to the monitor of traditional MVX. An overview of the

components of kMVX can be seen in Figure 1.

The I/O sync part, placed at the hardware-kernel interface,

is responsible for preventing spurious divergences by provid-

ing a uniform interface to the (shared) hardware. For instance

it provides both kernels with the same view of time and the

network. Information leaks are detected by divergent behav-

ior at the user space boundary in the syscall sync. Given the

local attacker in our threat model, the I/O sync does not need

to check for divergences, simplifying the design.

kMVX follows the conventional leader-follower design

for MVX [12, 19, 51]. In Figure 1, kernel 1 is the leader and

performs actual I/O operations. The other kernel is the fol-

lower, which synchronizes with the leader via an in-memory

communication channel.

For variant generation, we ensure the virtual memory ad-

dress spaces of the two kernels do not overlap. In addition,

we diversify the different allocators in the kernel and ran-

domize the stack usage with a compiler pass. For instance,

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

wemodified the kmalloc allocator in Linux to be type-based,

both to prevent use-after-free attacks but also to generate

a different memory layout for objects between the variants.

All these diversifications together provide us with a strong

defense against info leaks through software bugs.

Although running multiple kernels is also possible via

virtualization—running each kernel variant in a separate vir-

tual machine—this is not sufficient for kMVX. The level of

synchronization required for kMVX requires more in-depth

knowledge of the kernel state and its ordering (e.g., schedul-

ing between cores). Similarly the syscall sync, in particular

data transfers between user space and the kernel, would re-

quire kernel modifications to work properly with a virtual

machine monitor (VMM). Overall, the kernels still require

significant modifications despite using a VMM, without vir-

tualization giving any significant benefits or portability. As

such, we do not use virtualization for our kMVX design.

In kMVX both kernels are partitioned in physical mem-

ory, and limited to certain CPU cores. Only the leader has

access to all the hardware on the machine, such as the net-

work interface, whereas the followers have to communicate

with the leader to interact with the outside world. In our

kMVX design, our aim is to place the I/O sync as close to the

hardware boundary as possible, maximizing the kernel code

executed in each kernel.

4.1 Syscall synchronization
The syscall sync component at the user space boundary is

responsible for detecting sensitive information leaking to

the attacker. Because of the variant generation, such infor-

mation will differ when returned to user space, which is

then detected. Operating systems have a strict interface for

copying data to the user (in Linux there are copy_to_user,
put_user, and the syscall return value) which our syscall

sync interposes. Any data copied to the user is placed in the

shared ringbuffer to be validated for divergence. If any diver-

gence is detected the faulty bytes are zeroed, to eliminate the

info leak without stopping execution (but logging the event).

This is especially important for compatibility, since bugs may

cause non-malicious info leaks during regular execution.

Because data can only be returned after being checked and

(potentially) being zeroed, this effectively enforces lockstep

behavior between the variants for copying data to the user.

Previous user space MVX designs had a notion of policies,
where only certain (critical) syscalls are running in lockstep,

allowing the user to tune the trade-off between security

and performance [12, 19, 51]. Our kMVX design effectively

enforces such a lockstep policy since syscalls that copy data

to the user are considered critical syscalls.
Placing the monitor inside the variants themselves does

not compromise the security of our design, since it is mapped

at a different location in both kernels (Section 4.3). Any ac-

cess to this area first requires the attacker to leak its location,

which is prevented by the kMVX monitor itself.

4.2 I/O sync
In order to implement kMVX, we need multiple variants of

the OS kernel running simultaneously on the same hardware.

However, commodity operating systems such as Linux are

clearly not intended to run multiple kernel instances. More

importantly, when multiple kernel instances natively run

on the same hardware, the management of the hardware

state, specifically device state—a task performed only by the

kernel—must be done carefully. Note that when applying

MVX to user space programs, the I/O interface is clearly

defined with syscalls. However, for drivers and their interac-

tions with hardware there is generally no such interface [21].

If two kernels share the same set of cores, the execution

may need to be serialized, requiring the leader to wait a

significant time for the follower to finish before finishing

synchronization. Instead we parallelize the implementation,

associating a fixed partition of cores to each kernel. This

allows both kernels to execute at the same time, greatly

reducing the waiting time required for synchronization.

4.3 Variant generation
For our variant generation, we modify existing kernel al-

locators to yield different usage patterns between variants.

In particular, we apply variant generation by partitioning

the address space, modifying dynamic allocators such as the

SLAB allocator, and changing the format of the stack with a

compiler pass. Variant generation is, in some cases, highly

dependent on the software. In this section we focus on Linux,

but all techniques have more general applicability.

4.3.1 Address space partitioning
Partitioning of the address space is a well-known variant

generation scheme for MVX that ensures any pointer can

only be valid in at most one variant at a time [8]. Since kernel

pointers are a common target for info leaks, making sure

these always differ between variants means they are impos-

sible to leak, since that immediately causes a divergence.

Userspace programs are characterized by a very large ad-

dress space: the OS provides programs with a virtual address

space that can span up to 128 TB on x86-64. Our experiments

show that less than 1% of that is virtually mapped in a pro-

cess. Moreover, all regions mapped into userland (e.g., stack,

heap, libraries, binary) are very small on their own and can

be arbitrarily placed anywhere in the address space during

runtime. The kernel address space layout, on the other hand,

is strictly defined and determined at compile time.

Luckily, because virtual address ranges are much larger

than the actual physical memory-addressable resources of

most computers, the 128 TB of kernel virtual address space

on x86-64 can be split into two separate partitions without

significant drawbacks, enabling address space partitioning of

the kernel memory. By doing so, we ensure that any leaked

pointer will differ and trigger detection. For partial pointer

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

leaks, where only some of the bytes of a pointer are leaked,

we add additional entropy on each variants relying on the ex-

isting kASLR mechanisms. Recall that the amount of entropy

is not very important, since we just needs some variation.

4.3.2 Dynamic allocation
OS kernels such as Linux generally offer several ways of

dynamically allocating memory. For Linux, of particular in-

terest are the SLAB allocator and vmalloc. With vmalloc it

is possible to allocate one or more pages, which are virtually

but not physically consecutive, and allocations are always

rounded to a multiple of the page size. The SLAB allocators,

on the other hand, reserve a number of pages for a SLAB

cache, and can then hand out objects of a smaller size from

that cache. Each cache contains objects of a single size. Most

OS kernels contain a similar SLAB allocator, including Linux,

Solaris, FreeBSD, and NetBSD.

To provide variation in these dynamic allocators, we make

sure one variant will follow different allocation patterns than

the other. In particular, for the vmalloc allocator, we simply

add guard pages around each allocation. Since vmalloc is

rarely used and its allocations are not physically contiguous,

this adds minimal overhead.

The pressure and constraints on the SLAB allocator are

much higher, and therefore it requires a different scheme

to provide diversity. In our design we change one variant

to have a type-based SLAB allocator. While Linux partially

provides this interface, allocations made with kmalloc still

use (untyped) generic caches. Furthermore, Linux by default

merges all caches with the same size. By making the SLAB

allocator type-based, we not only get type-safety, but we

also get different allocation patterns for every cache, since

each data structure now has its own cache.

4.3.3 Stack frames
Since a lot of info leaks originate from the kernel stack it

is important to provide variation there as well. The layout

of the stack is determined by the compiler, and cannot be

changed after compilation. We identify two types of info

leaks on the stack: an overflow into another variable on the

stack or an uninitialized read on the stack (Fig. 2a). For each

of these we propose lightweight variation techniques using a

compiler pass, leading to a different layout, causing different

behavior for both classes of errors.

To protect against out-of-bound reads on the stack we

change the kernel stack frame layout: by modifying the or-

der or size of every stack variable an over-read will end up

reading a different variable in each variant. For uninitialized

reads, the read will instead read contents that were on the

stack before from an old stack frame, as shown in Figure 2a.

These contents were placed there by a previous function call,

from another path in the call-chain. To protect against such

errors, we randomize the distance between stack frames as

shown in Figure 2b. In each variant the stack frame of the

(a) Normal

func1

func2

int a

void *b

func1

func3

int c

int d

(b) kMVX random padding

func1

func2

int a

void *b

func1

func3

int c

int d

random
padding

Figure 2. The layout of the stack with different stack frames

per function (stack grows downward). This shows the effect

of uninitialized reads with and without stack frame padding.

In both cases func1 first calls func2, then func3. In func3
there is an uninitialized read on the variable d, which would

read the value that was previously there, the pointer b, but
with random padding between frames the value will differ.

function containing the uninitialized read will end up in

a different location. Moreover, its offset relative to the old

stack frame (func2 in Figure 2) will be different. While both

variants might read sensitive data on their own, the chance

that they both read the same sensitive data is marginal.

5 Implementation
As previously discussed, kMVX requires four building blocks:

1) multiple kernel instances, 2) variant generation, 3) syscall

sync, and 4) I/O sync. In this section we will explain in detail

how we modified the Linux kernel to implement these.

Popular operating systems capable of runningmultiple
kernel instances include Barrelfish [2] and Amoeba [30].

For compatibility with existing software and to show that

our design can be applied to production-use operating sys-

tems, we implemented a prototype of the kMVX design for

Linux, on top of FT-Linux [25]. FT-Linux allows multiple

Linux kernel instances to run on the same multicore ma-

chine for the purpose of fault tolerance, but provides none of

the variant generation and synchronization functionalities

part of our kMVX design. FT-Linux is based on the Linux

3.2.12 kernel and targets the Intel x86-64 architecture. We

firmly believe that our design can be applied to other OS

kernels and enabled on other ISAs as well.

In kMVX the hardware resources of the machine are split

into two partitions: each kernel instance gets a set of cores

and its own reserved memory. We run all unprivileged user

space processes in a special kernel namespace with syscall

and I/O sync enabled.When a process is started in this names-

pace, the same process is also created on the follower, having

the same PID, file descriptors, and environment.

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

Contrary to the design shown in Figure 1, in our prototype

each kernel runs a separate version of the user program for

each kernel variant. Most system processes run only once

on a machine: only unprivileged applications run on both

variants. Running not only the kernel but also applications

twice is easier to support, requiring less communication

between the kernels, and most importantly eliminates shar-

ing of possibly critical data structures between variants. By

strictly separating the memory we reduce the possibility

of circumventing kMVX by leaking shared data. In other

words, running two separate versions of the user program

introduces more variance in the memory layout of the kernel

and allows the variants to have strictly separated memory.

Similarly, by running the application on the follower, we also

introduce variance with scheduling, which may be a source

of bugs (e.g., race conditions). Note that replicating the user

space application is an implementation detail that can be

changed, as it is not fundamental to our design.

5.1 Variant generation
5.1.1 Address space partitioning
We constructed an address space partitioning mechanism,

which allows us to linearly split the physical memory space

of one machine between different kernels. This feature im-

plicitly enables the Linux kernel to deflate and load its image

at any physical address. We can freely set these addresses

with kernel boot parameters.

For the virtual addresses, the Linux kernel divides its ad-

dress space into several regions (direct physical mappings,

vmalloc, virtual memory map, kernel text, and modules). To

implement address space partitioning, we logically halved

the size of each virtual region and assigned the first half to

the leader and the second half to the follower, thus keeping

the original base address for the leader, and assigned a new

one to the follower, as shown in Figure 3b. This has the side

effect of reducing the maximum amount of supported phys-

ical memory to 32 TB. For this purpose, we had to slightly

modify the kernel to ensure each memory region could be

freely relocated in the virtual address space. On recent Linux

versions, most memory regions are subject to kASLR already,

enforcing thememory regions to be in a predefined order and

size. We modified the kernel to ensure physical-to-virtual off-

sets, order, and size can be freely changed and randomized at

compile time for all the virtual memory regions, addressing

the relocation problem to support address space partitioning.

5.1.2 Stack and heap variation
Besides address space partitioning, we implemented all var-

gen techniques described in Section 4.3 for our prototype,

providing us with a high level of security against various

classes of vulnerabilities. Note that we can defend against

more classes of vulnerabilities by adding more variation

techniques. In this paper we focus on a few stack- and heap

(a) Regular

User space Direct mapping vmalloc

vm
em

m
od

ul
es

te
xtRegular

Linux

Kernel space

(b) kMVX

User space Direct mapping vmalloc

vm
em

m
od

ul
es

User space Direct mapping vmalloc

vm
em

m
od

ul
es

kMVX
variant 1

kMVX
variant 2

Figure 3. Regular kernel virtual address space, and the

kMVX partitioned non-overlapping address space.

variation techniques. Other memory layout randomization

techniques, such as struct field order randomization [11],

have successfully been applied to Linux [43].

For our prototype we modified the SLUB allocator (used

for kmalloc and kmem_cache_alloc) to be type-based. For
the untyped kmalloc allocator, we assign types based on the

call site, looking at the return addresses as unique type signa-

ture [1, 48]. For dynamically sized objects such as strings, we

still use the old kmalloc (size-based) caches. Changing the

allocator introduces variance in the heap layout, providing

(probabilistic) protection against heap-based vulnerabilities,

including use-after-free vulnerabilities.

For the stack variation we modified the GCC compiler

(version 6.0) to add random padding to stack frames, and

reverse the order of variables within stack frames. These

variations have minimal impact on performance, while pro-

viding kMVXwith strong protection against stack-based info

leaks, as detailed in Section 4.3.3.

5.2 Syscall sync
Our kMVX prototype synchronizes on every copy_to_user
and put_user call. When the leader encounters a synchro-

nization point, the contents of the copied data is sent from

the primary to the follower using a fast inter-kernel commu-

nication channel. Each message sent between the variants is

given a unique id, based on the current process id, syscall id,

and a message counter, allowing us to match a certain sync

call that originates from the same syscalls on both variants.

Upon entering the copy_to_user-call, the follower reads
the data from the channel and does a byte-by-byte compari-

son of the buffers. If the expected message is not available in

the channel, to avoid busy waiting, we let the kernel sched-

ule another kernel thread when waiting for a message. We

made the scheduler kMVX-aware, allowing it to prioritize

tasks with available sync messages. If the follower does not

detect a divergence in the message, it sends the leader an ac-

knowledgement message, allowing both variants to continue

execution. If, however, the follower detects a divergence, it

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

sets the offending bytes to a zero-value, logs the divergence,

and sends the modified buffer to the leader. The leader, finally

copies either its own buffer in case of an acknowledgement

or the modified buffer in case of a divergence.

In our experiments, zeroing the data does not cause any

conflicts and allows us to prevent possible info leaks without

halting the user-space application. Also note that zeroing

the data may only cause a conflict affecting the user space

application; the kernels do not diverge or crash due to a

mismatch between the leader and follower.

I/O-intensive workloads might generate a lot of commu-

nication between variants, both for I/O- and syscall sync,

potentially slowing down kMVX. Hence, it is vital to imple-

ment an efficient communication channel for our sync points.
Since the messages for kMVX are synchronous in nature,

we opted for an efficient communication layer based on a

lockless shared-memory hash table. We also implemented a

shared-memory allocator, to reduce the number of memory

writes when transferring messages between the variants.

5.3 I/O sync
Kernel operations that interact with hardware devices can-

not be performed by both kernels simultaneously. In cases

such as network I/O, we let the leader communicate with the

hardware, after which the result is replayed to the follower.

This approach is comparable to replaying non-idempotent

syscalls in existing MVX systems, but applied to operations

inside the kernel. When the leader executes these replayed

calls, it copies the results to a shared buffer from where the

follower can read the result using a similar communication

channel as syscall sync. Note that contrary to syscall sync,

I/O sync does not need to be synchronous; the leader does not
need to wait for an acknowledgement from the follower.

kMVX currently contains two different I/O sync modes:

low-level and high-level sync. In the low-level sync compo-

nent kMVX replays results of in(b,w,l), read(b,w,l,q),
and memcpy_fromio calls, which are used to interact with

hardware. This low-level mechanism is not used for all dri-

vers, only the ones whitelisted by kMVX. By synchronizing

these reads we maintain a consitent state for simple devices

such as the real-time clock without special modifications.

More complex device I/O, such as DMA, cannot be transpar-

ently supported currently, requiring modification in drivers

to be kMVX-aware. For compatibility reasons, these kinds

of I/O effects are replayed at a higher (i.e., subsystem) level.

kMVX provides a wrapper mechanism which makes it easy

to replay subsystem calls with a few lines of modifications.

5.3.1 Networking
Since the networking stack is highly state-dependent it re-

quires heavy modifications to keep synchronized. For most

of the networking, in our prototype, we opt to replicate the

calls at a higher level, manually marshalling the effects of

the syscall from the leader to the follower, while keeping a

minimal shared state to reduce communication.

For example, to keep the result of the select call consis-

tent across variants, we have to replay the resulting sets of

the select call from the leader to the follower. Nevertheless,

we leave most error handling up to the individual variants.

For example checking for invalid file descriptors is left to

the individual variants. This approach gives us a balance

between full state-replication and just forwarding the results

of the syscall from the leader to the follower.

As another example, in the socket syscall we synchronize

the sets of open file descriptors between variants, mainly

to keep the file descriptors consistent, but also to allow for

error handling in the follower without communicating with

the leader. When the read syscall is called on a socket file

descriptor, the leader has to replay the data obtained from

the lower levels of the network stack to the follower, thus

requiring an I/O sync. On the other hand, if read is called

on an invalid file descriptor, there is no need for an I/O sync,

as both variants know about which file descriptors are valid.

In the future I/O sync can be changed to happen at a lower

level in the networking stack, but this requires more com-

plex logic to be kept consistent. Currently our prototype

only supports the select API for network I/O multiplex-

ing. As such, we do not support replaying of the poll and

epoll interface, however, these interfaces could be added

in a similar fashion to the select syscall.

5.3.2 Disk I/O
The current implementation runs different file systems for

each replica. The leader kernel accesses the physical disk,

while the replica uses a tmpfs file system. Using different

drivers is a source of variance, enhancing security as the ex-

ecution paths are very different. Since copy-to-user calls are

implemented at a higher level (i.e., not in lower-level drivers)

the output is still the same. For kMVX we implemented a

generic character device that can replay an arbitrary device.

For example, to eliminate divergence in the variants, we ap-

ply this character device to /dev/(u)random, replaying the
value from the leader to the follower.

Furthermore, a number of syscalls may cause divergence

between variants, due to nondeterministic behavior. By re-

playing these syscalls from the leader to the follower, we

keep the variants consistent. For example syscalls which

may return different values if the variants are even slightly

out of sync, such as gettimeofday, are replayed from the

leader to the follower, while syscalls that do not need to be

replayed are executed locally on both variants. In fact, only

a small subset of all syscalls are replayed. For example, we

modify the getpid syscall to return a namespace-unique

identifier that is the same across replicated processes in the

variants, avoiding extra communication overhead. Our cur-

rent prototype replays syscalls related to time (time and

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

gettimeofday) and networking (in total 15 syscalls were

modified for replaying).

5.3.3 Nondeterminism
A source of nondeterminism in the kernel, besides hard-

ware I/O, is kernel thread scheduling. Since the schedul-

ing order inside the kernel is not visible to user space, it

does not affect kMVX. The order of system calls in user

space might, in the case of multithreaded applications, cause

divergence. kMVX supports deterministic Pthread replica-

tion by forcing a global deterministic order on the system

calls for a process. By using a modified Pthreads library

(loaded using LD_PRELOAD) that overrides functions, such as

mutex_lock and mutex_trylock, enabling deterministic

ordering of syscalls through a special system call. We refer

the reader to the FT-Linux paper [25] for a more thorough

explanation of thread replication.

Likewise, interrupts are another source of nondetermin-

ism.While these sources of nondeterminism affect the control-

flow in the kernel [31], the interaction with user space re-

mains unchanged. The only exception being signals. In order

to keep the variants consistent, signals caused by the user

(e.g., using the kill syscall) are delayed until after the next

synchronization point. Likewise, signals originating from

other processes are also delayed is a similar fashion.

Asynchronous signals originating from interrupts, such

as SIGINT caused by the keyboard, are a source of random-

ness, as they can be caused at any moment in the execution.

In our prototype we delay dispatching this signal until the

next syscall, as to have a coherent state between variants.

We then initiate the same signal on the follower using a

callback function through an asynchronous messaging layer.

Handling asynchronous signals in MVX is an open problem,

with several solutions having been proposed [39, 40]. Our

standard put_user() and copy_to_user() modifications

check signal data copied to user space for consistency across

variants. We had to modify copy_siginfo_to_user() to

not synchronize pointer fields (which will obviously be dif-

ferent across variants due to our variation techniques).

6 Evaluation
6.1 Performance evaluation
Experimental setup We evaluate the performance of our

kMVX prototype using a number of micro benchmarks as

well as a number of real-world application macro bench-

marks on a 4-core Intel i7-3770with 16 GB of RAM. All bench-

marks compare the performance of kMVX against a vanilla

Linux 3.2.12 kernel. When running kMVX, we split the hard-

ware into two partitions: each variant is limited to 2 cores and
8 GB of RAM. This partitioning accurately reflects how de-

ploying kMVX on existing systems affects the performance

without adding additional resources. The baseline uses 4 cores
and 16 GB of RAM. We disable the vDSO for both the baseline

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

getpid getcwd gettimeofday read

O
v
e
rh

e
a
d

normal execution
I/O sync

syscall sync

Figure 4. Microbenchmarks. Relative performance over-

head of a selected number of syscalls. For the read syscall

we read a 512 KB file.

base kMVX UniSan KASAN

µs
null call 0.04 0.06 (50.0%) 0% 5%

null I/O 0.08 0.14 (75.0%) ∗ 49%

stat 0.34 0.45 (32.4%) 2.7% 640%

open/ close 0.73 0.92 (26.0%) -4.2% 1300%

select TCP 2.06 2.47 (19.9%) 0% 59%

signal install 0.11 0.15 (36.4%) 0% 10%

signal handle 0.74 2.41 (226%) 3.4% 311%

fork proc 67.1 101.31 (50.1%) 0% 299%

exec proc 204.0 275.11 (34.9%) 0.7% 163%

sh proc 483.0 737.60 (52.7%) ∗ 50%

pipe latency 1.77 2.05 (15.8%) 2.4% 41%

prot fault 0.208 †0.209 (0.4%) 2.4% 26%

TCP latency 12.0 21.10 (75.8%) 6% 250%

MB/s
Pipe bw 3005 2100 (30.1%) 0.2% 27%

TCP bw 3330 1641 (50.7%) -0.1% 60%

Table 1. LMBench results. †At the moment our prototype

does not accurately synchronize all signal handling events

between the kernels. To prevent false positives, we disable

kMVX sync for asynchronous signals. ∗Not reported in [26].

and for the kMVX kernels. For the real-world server appli-

cations we benchmark the in-memory database redis-4.0.6

and three web servers: nginx-1.10.1, lighttpd-1.4.48, and a

mongoose-6.10-based web server. We also benchmark the

performance of multithreading in kMVX using the parallel

compression utility pbzip2. Since our prototype implemen-

tation runs two kernels and two copies of the user space

application, kMVX uses roughly twice as much memory as

a vanilla Linux kernel.

Microbenchmarks Figure 4 presents the overhead incurred

by our kMVX prototype by comparing the median of the

number of cycles taken per syscall measured from user space

relative to a vanilla Linux kernel. Each of the selected syscalls

is executed 10,000 times in a loop.

In Figure 4, the overhead of the microbenchmarks is split

into three components: overhead of the normal execution

of the syscall, the I/O sync, and the syscall sync. The syscall

sync includes the overhead for communicating return values

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

 1

 1.5

 2

 2.5

 3

b
s
e

a
rc

h
c
a

c
h

e
h

e
a

p
s
o

rt
h

s
e

a
rc

h
ic

a
c
h

e
lo

c
k
b

u
s

ls
e

a
rc

h
m

a
llo

c
m

a
tr

ix
m

e
m

b
a

rr
ie

r
m

e
m

c
p

y
m

e
rg

e
s
o

rt
q

s
o

rt
s
tr

s
tr

e
a

m
ts

e
a

rc
h

v
e

c
m

a
th

w
c
s

z
lib

 1

 1.2

 1.4

 1.6

 1.8

 2
n

o
rm

.
c
a

c
h

e
 m

is
s
 o

v
e

rh
e

a
d

n
o

rm
.

ru
n

ti
m

e
 o

v
e

rh
e

a
d

cache miss
runtime

Figure 5. stress-ng. We measure the performance of kMVX

on user space benchmarks making use of few syscalls. We

show how cache performance is affected by kMVX. stress-ng
is configured to use two workers.

to other variants, waiting for the other variant, and check-

ing if they match, whereas I/O sync overhead is the cost of

replaying certain logic in the follower.

As shown in Figure 4, simple syscalls such as getpid and

getcwd, which copy a small amount of data to user space,

incur a overhead of about 40%. The overhead mostly comes

from syscall sync between kernels. While gettimeofday
also copies a small amount of data, this syscall needs to be

replayed from the leader to the follower (I/O sync), in order

to keep the view of time between the variants consistent to

prevent spurious divergences. On the other hand, the read
syscall returns a large buffer to user space via copy-to-user.

kMVX splits larger buffers into several cache-aligned blocks

to optimize throughput. In Figure 4 we can see that the read
system call has a higher overhead than other syscalls due to

the larger buffers being copied for syscall sync.

We also benchmark kMVX using the LMBench suite of

microbenchmarks, as presented in Table 1. Results show that

the overhead is generally more prominent for I/O-intensive

benchmarks. In general, small syscalls with a low duration

have a higher overhead, since a relatively larger part of the

syscall is spent on syscall sync. The select TCP benchmark

has a lower overhead compared to other benchmarks due

to the fact that it is replayed, thus the leader does not need

to wait for an acknowledgment from the follower. Note that

LMBench stresses the system calls (where a large part of the

overhead for kMVX comes from). As such, the overhead is

higher than for a majority of real-world applications, and

shows the worst-case for kMVX.

Since running multiple kernels introduces more memory

accesses, we also benchmark how kMVX affects cache hit/

miss rates compared to a vanilla Linux kernel. For this pur-

pose, we use the stress-ng [44] benchmarking suite to mea-

sure cache performance and to show how kMVX behaves

for computationally and memory intensive applications (i.e.,

applications with relatively few syscalls).

As can be seen in Fig. 5, the cache miss rate is significantly

higher for kMVX than for a vanilla Linux kernel. For appli-

cations that are computationally heavy, rather than memory

heavy, we generally see a modest 22% runtime overhead.

For more memory intensive applications, we see that the

overhead is proportional to the increase in cache miss rates

in most cases. For example, the cache, matrix, and stream
benchmarks in the stress-ng suite are memory intensive,

getting a higher cache miss rate when running on kMVX,

degrading their runtime performance. Some benchmarks

(such as icache, malloc, and membarrier) perform many

syscalls, and as such kMVX takes an significant performance

hit, as shown in earlier microbenchmarks.

Some benchmarks, such as zlib, wcs, vecmath, see a

modest increase in cache misses. The data accessed by these

benchmarks usually is available in L2, giving us a cache hit.

Since L2 cache is partitioned per-core, and the cores are not

shared between variants, we speculate that the L2 miss rate

is not impacted as much in these kinds of benchmarks. On

the other hand, the stream benchmark shows a significant

higher cache miss rate. This benchmarks allocates buffers at

least 4 times the size of the L2 cache, and repeatedly performs

operations on these buffers. The stream benchmark, thus

relies on L3 cache, which is shared by both kernels in our

setup, showing a much higher cache miss rate than other

benchmarks. Architectures with non-inclusive caches may

show different characteristics for these benchmarks.

Macrobenchmarks To evaluate the real-world overhead

of our kMVX prototype, we benchmark a number of server

applications. Servers incur the most overhead from kMVX

since they are particularly I/O-intensive, their primary bottle-

neck being networking or the disk. Syscalls like read occur

frequently in such applications and require expensive checks

on the copy-to-user calls, as shown by our microbenchmarks.

Furthermore, network syscalls have to be replayed, adding

more overhead for such applications.

Figure 6 shows the overheads for the mongoose, nginx,
and lighttpd web servers for a varying number of concur-

rent connections. We benchmark kMVX using ApacheBench

(with keepalive flag, loading a 512 byte page) over a 1 gigabit

network connection (the client running a Intel i7-7800X with

24GB RAM), however, in this setup we could not saturate the

system fully for some benchmarks. For example, as can be

seen in Figure 6 when using a 1 gigabit network connection

the overhead for mongoose becomes 3%, as the network re-

quest latency is the major bottleneck for the single-threaded

server. For nginx and lighttpd we see an overhead of at most

27% on the gigabit connection.

To be able to fully saturate the system, we also benchmark

using the loopback interface, achieving the highest possible

throughput. In this setup ApacheBench itself only runs on

the leader kernel, whereas the server application utilizes

both variants. Since using the loopback interface eliminates

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 10 20 30 1 10 20 30

N
o
rm

a
liz

e
d
 r

u
n
ti
m

e
 o

v
e
rh

e
a
d

Concurrent connections

Webservers with Apachebench

Mongoose
Nginx

Lighttpd

loopbackgigabit iface

Figure 6.Web servers benchmarked with ApacheBench on

a 1 gigabit link and the loopback interface. All web servers

use the select API. Nginx has 1 worker process.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

P
IN

G
IN

L
IN

E

P
IN

G
B

U
L
K

S
E
T

G
E
T

IN
C

R

L
P
U

S
H

R
P
U

S
H

L
P
O

P

R
P
O

P

S
A

D
D

H
S
E
T

S
P
O

P

L
P
U

S
H

L
R

A
N

G
E

1
0
0

L
R

A
N

G
E

3
0
0

L
R

A
N

G
E

5
0
0

L
R

A
N

G
E

6
0
0

M
S
E
T

R
e
q
/s

Redis

Vanilla
kMVX

Figure 7. Redis. Geomean overhead of ∼1.43x for the redis
in-memory database using redis-benchmark.

any overhead from the kernel drivers this represents a worst-

case scenario. The overhead via the loopback interface for

mongoose is about 35% when saturated (i.e., more than 10

concurrent connections). For the better-performing servers,

nginx and lighttpd, we see a higher overhead of about 50%

when saturated (around 20 concurrent connections).

Similarly, the average runtime performance overhead is

43% when we stress the server with the redis-benchmark
suite (Figure 7). In some parts of the suite, such as the SET
and LPOP tests, the performance overhead is in the range of

26%. The relatively better performance for these tests can be

explained by the fact that a larger part of these operations

are performed in user space. The impact of syscall sync on

the memory-intensive SET operation is relatively smaller

than for other syscall-bound operations, such as PING.
Besides I/O heavy applications, such as the servers dis-

cussed earlier, we also show the performance of kMVX on the

multithreaded pbzip2, which is computationally/ memory-

heavy, rather than I/O-heavy. In this benchmark, we com-

pare the data throughput of kMVX against vanilla Linux in

a multithreaded file compression benchmark. pbzip2 is an

application that uses Pthreads for parallel file compression.

pbzip2 uses one producer thread, reading the file from the

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Pbzip2 worker threads

Linux
kMVX

Figure 8. pbzip2. Benchmark of multithreaded bzip2 com-

pression of a 1 GB file of random data using different number

of worker threads, using the default block size of 900K. We

show the throughput in MB/s of vanilla Linux and kMVX.

Note: when kMVX is enabled, we only have 2 cores available.

disk; a number of worker threads to compress the file in par-

allel; and one consumer thread, combining the output from

the worker threads into one file. In Fig. 8, we see that the

throughput in kMVX when using 1 worker thread is about

11% lower than for a vanilla Linux kernel. A large part of this

degradation is due to the overhead incurred by the syscall

sync. In the case of pbzip2, there are no significant syscalls in
the run of the program besides the read, write and futex
syscalls. Enforcing a total order on the syscalls in the various

threads is, thus, relatively cheap.

When partitioning the hardware for kMVX we give up

half of the cores usually available to user space applications.

As such, the performance with more than 4 worker threads

is, naturally, lower for kMVX. If we consider only the per-

formance up to 4 worker threads, the geometric mean of the

run-time overhead is 16%. We note a slight decrease in per-

formance when using more threads in kMVX, caused by the

overhead incurred by keeping a global order on the system

calls over the various threads.

Note that the overhead of 16% (when considering up to 4

workers) is significantly lower than the 30%+ observed for

syscall-intensive applications, such as servers. Most of the

time in pbzip2 is spent in user space, making the syscall sync

have less of an impact on the overall performance.

Comparison with related work Our prototype shows an

overhead similar to that of traditional user space MVX sys-

tems. It is, however, a debatable comparison, since kMVX

operates at the kernel level. Instead, we compare our proto-

type to other kernel defenses focusing on information leaks.

For instance, KASAN and kmemcheck provide some degree

of memory safety in the Linux kernel, but do not cover all

classes of info leaks and have respectively 4x and multiple

orders of magnitude overhead. Recent publications on mit-

igating uninitialized read vulnerabilities, UniSan [26] and

SafeInit [28], are the closest to kMVX. Note that UniSan

and SafeInit only prevent leaks for uninitialized data. kMVX

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

presents a more general defense against information leaks,

both for uninitialized data and for other vulnerabilities, such

as buffer overreads of initialized data. We would like to point

out that the approach introduced with kMVX can also be ap-

plied to prevent other types of exploits besides information

leaks. For example, MVX has previously been applied to pre-

venting ROP-based attacks [50]. In this paper, our variation

techniques are focused on preventing information leaks.
Existing solutions for preventing information leaks in the

kernel, focusing only on uninitialized reads, have a very low

performance overhead. SafeInit and UniSan have an average

overhead of below 5% for typical server applications. Note

that UniSan benchmarks their web server on a 1 gigabit con-

nection. In the same setup kMVX has a overhead of at most

27%. As a comparison, we included the LMBench numbers

from the UniSan paper in Table 1. While the UniSan num-

bers show much less overhead than kMVX, UniSan can only

prevent uninitialized reads, which constitute only 60% of all

info leaks [26]. kMVX provides stronger security guarantees
by covering other classes of info leaks not detectable by pre-

vious defenses. On the other end of the spectrum, regarding

memory safety in the kernel, we find KASAN [15]. KASAN

offers detection of various memory errors, such as buffer

overreads, use-after-free, use-after-return. Note that KASAN

is intended as a debugging tool for memory errors, rather

than a defense mechanism against information leaks, and as

such the overhead is, understandingly, significant.

6.2 Security analysis
For our security analysis, we identify two primary targets

that attackers want to leak from the kernel: kernel point-
ers for further attacks and sensitive data such as crypto

keys. kMVX applies address space partitioning to its variants,

meaning every pointer will differ between variants. When a

valid kernel pointer is copied to user space, the correspond-

ing pointer will be different in the other variant, leading to

a detected divergence.
For other sensitive data, we have to consider where it is

stored and leaked from. For instance, such data might be

located on the kernel stack or heap, and in each case the

guarantees depend on the variation in those areas.

For the heap, our design provides strong guarantees against
both spatial and temporal memory error exploits. Because of

the type-based SLAB allocator, both temporal and spatial at-

tacks are already more limited [1, 48]. Having allocators with

different behaviors and allocation patterns between variants

is highly likely to eliminate the residual attack surface. For

the stack, data can be leaked via temporal issues, such as an

uninitialized read, or a spatial error such as a buffer overflow.

The former is stopped by having different reuse patterns

for each variant, using random stack frame padding. Spatial

errors are stopped by the stack frame padding or the variable

order randomization, causing data to be misaligned in both

variants, triggering divergence and detection.

Type of leak # CVEs k
M

V
X

U
n
iS
a
n

K
A
S
A
N

use-after-free 15 0 0 15 0 15

uninitialized read 49 4 1 54 54 0

out-of-bounds read 1 1 0 1 0 1

other 8 0 10 12 0 0

Total 89 82 54 16

H S O

Table 2. Linux kernel 2017 info disclosure CVEs categorized
by type and origin of leaked information. Info leak origin H:

heap, S: stack, O: other.

To concretely demonstrate the effectiveness of kMVX, we

analyzed all the Linux kernel information disclosure vul-

nerabilities (CVEs) from 2017 [33]. Similarly to prior work

in the area [26, 35], we split the types of information leak

vulnerabilities into four categories: (1) uninitialized read,
(2) use-after-free, (3) out-of-bounds read, and (4) other. The
other category contains vulnerabilities that leak information

using unconventional means, either through a faulty check

or by writing sensitive information to a location accessible

by an unprivileged user (e.g., system logs). To show that our

variation techniques are sufficient, we also identify the ori-

gin of the leaked data for each vulnerability: heap (H), stack

(S), and other (O). Our analysis shows that our variation
techniques are sufficient in preventing 92% of info leak CVEs

published in 2017. An overview of the analysis of all these

CVEs is published as part of the source code of kMVX.

To showcase how kMVX stops vulnerabilities, we ran-

domly picked three CVEs concerning info leaks in the Linux

kernel. CVE-2016-4569 leaks information from the kernel

stack due to reading uninitialized data. In our tests, we were

able to reliably detect that information was leaked as our

stack variation techniques between the variants make the

diversified stacks leak different data. Similarly, due to the

variations introduced by the different heap allocator imple-

mentations, CVE-2013-2237, which leaks information from

the kernel heap using uninitialized reads, is also detected. In

short, kMVX can reliably detect both heap- and stack-based

uninitialized reads, as well as out-of-bounds reads, due to the

diversified memory layouts introduced by our vargen.

In CVE-2016-0728, an attacker can exploit an use-after-free
bug to forge an object at the location of a previously freed

object. Since these objects are of different types, the type-

based SLAB allocator in the follower places this object in

a different bucket, leading to detectable divergent behavior

between the variants.

Finally, we also prevent other possible leaks of kernel

pointers that do not originate from memory errors, but in-

stead are accidentally leaked due to programmer errors. For

example, until recently, the wchan field of /proc/PID/stat

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

could be used to leak an absolute kernel address to unpriv-

ileged user space [29]. When an attacker reads such a file,

kMVXwill detect the divergence and zero out the differences

between the variants, eliminating such info leaks.

The one out-of-bounds read vulnerability from the 2017

info leak CVEs (see Table 2) that kMVX does not detect is

due to a remote attacker leaking information using a bug in

a USB driver. As we focus on a local attacker in our threat

model, we currently do not cover this vulnerability. The

remaining 2017 CVEs that kMVX is not able to detect are

either present in the bootloader (e.g., CVE-2017-0455) or are
caused by timing side channels (e.g., CVE-2015-2877).

We have shown that kMVX can detect and prevent nu-

merous types of vulnerabilities due to our selected variation

techniques. By addingmore variation techniques, other types

of vulnerabilities can be thwarted in the future. To our knowl-

edge, kMVX is the first defense to deterministically prevent

any leakage of kernel pointers and provide strong (proba-

bilistic) guarantees for preventing leakage of non-pointer

data.

7 Related work
Kernel defenses Since Linux is a complex and integral part

of the software stack, many kernel defenses have been de-

veloped over the years. For instance, kmemcheck [14] pro-

vides comprehensive memory safety (use-after-free, out-of-

bounds, and uninitialized reads) but at the cost of orders of

magnitude overhead. KASAN [15] focuses on only use-after-

free and out-of-bounds bugs by applying ASan [42] to the

kernel, but cannot detect all information leaks and still in-

curs 4x overhead. The use of annotations and static analysis

with Coccinelle [16], Sparse [17], and GCC plugins [47] can

detect potentially problematic code patterns statically. The

PaX team introduced features to, for instance, force zero-

initialization of __user structs (structleak), stack frame

clearing during syscalls (stackleak), harden copy_to_user
(usercopy), and secure deallocation (sanitize) [46].

UniSan [26] and SafeInit [28] can prevent kernel info leaks

due to reading uninitialized variables, by using static analysis

and forcing initialization of variables that might leak to the

user. Most of these approaches only address a single source

of info leaks or incur significant runtime overhead, whereas

our kMVX design addresses all info leaks at a much smaller

cost. The Split Kernel [22] hardens the kernel with several

(expensive) hardening techniques, but also maintains non-

hardened copies of each function, allowing an untrusted

process to run under the hardened kernel whereas trusted

processes can still use the more efficient kernel functions.

MVX In 2006, Cox et al. [8] proposed a design, based on

N-version programming [6], where variants were automati-

cally generated, and where the monitoring and synchroniza-

tion happens at the syscall level, laying the foundation of

modern MVX research. Variant generation is based on the

field of (automated) software diversity [24]. Proposed vari-

ant generation include random code insertion [9], system

call randomization [7], instruction set tagging [8], address

space partitioning [8], heap- and stack layout randomiza-

tion [3, 40], and non-overlapping offset spaces [19]. Our

variant generation for kMVX takes inspiration from these

and implements effective and efficient techniques suited for

the kernel.

Monitoring for user space MVX is done primarily through

the syscall interface, with older solutions using more coarse-

grained alternatives [3, 8]. Three approaches exist: in-kernel

monitoring (high performance but intrusive) [8, 51], mon-

itoring by an external application (for instance using the

ptrace debugging facility of the kernel, which is safe but

slow) [4, 18, 40, 52] and in-process monitoring, which is

efficient but requires a careful design in security applica-

tions [12, 23, 36, 37, 51]. An exception here is Detile [10],

which instead synchronizes at the byte-code instruction level

to protect scripting engines. Our kMVX design also works at

a different boundary than syscalls, requiring a new design.

It can be compared with both the in-kernel and in-process

monitoring, and can be considered more intrusive than tra-

ditional MVX monitors.

8 Conclusion
In this paper, we have presented kMVX—the first design that

runs multiple diversified kernel variants simultaneously on

the same machine to prevent information leaks. We have dis-

cussed a prototype implementation of kMVX,which provides

efficient info-leak detection while preserving the Linux ABI,

allowing us to run regular Linux binaries without changes or

recompilation. We have demonstrated a number of variation

techniques specific to kernels and identified the main obsta-

cles in keeping the variants from diverging. We have also

shown our prototype supports a number of popular server ap-

plications with a overhead of 20%–50%. On less I/O-intensive

applications, such as Pbzip2 and the stress-ng benchmark,

the overhead is generally below 20%. The source code for

kMVX is freely available at https://github.com/vusec/kmvx.

Acknowledgments
We would like to thank the anonymous reviewers for their

valuable feedback. This work was supported by the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No. 786669 (ReAct) and No. 825377

(UNICORE), by Cisco Systems, Inc. through grant #1138109,

and by the Netherlands Organisation for Scientific Research

through grants NWO 639.023.309 VICI “Dowsing” and NWO

639.021.753 VENI “PantaRhei”. This paper reflects only the

authors’ view. The funding agencies are not responsible for

any use that may be made of the information it contains.

https://github.com/vusec/kmvx

Detecting Kernel Information Leaks with Multi-variant Execution ASPLOS’19, April 13–17, 2019, Providence, RI, USA

References
[1] Periklis Akritidis. 2010. Cling: A Memory Allocator to Mitigate Dan-

gling Pointers. In USENIX Security.
[2] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture

for Scalable Multicore Systems. In SOSP.
[3] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic

Memory Safety for Unsafe Languages. In PLDI.
[4] D. Bruschi, L. Cavallaro, and A. Lanzi. 2007. Diversified Process Repli-

cae for Defeating Memory Error Exploits. In IPCCC.
[5] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-

dovich, and M. Frans Kaashoek. 2011. Linux kernel vulnerabilities:

State-of-the-art defenses and open problems. In ApSys.
[6] Liming Chen and Algirdas Avizienis. 1978. N-Version programming:

A Fault-Tolerance Approach to Reliability of Software Operation. In

FTCS.
[7] Monica Chew and Dawn Song. 2002. Mitigating buffer overflows by

operating system randomization. Technical Report.
[8] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei

Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser.

2006. N-variant Systems: A Secretless Framework for Security Through

Diversity. In USENIX Security.
[9] S. Forrest, A. Somayaji, and D. Ackley. 1997. Building Diverse Com-

puter Systems. In HotOS.
[10] Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre Pawlowski,

Behrad Garmany, and Thorsten Holz. 2016. Detile: Fine-Grained In-

formation Leak Detection in Script Engines. In DIMVA.
[11] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. 2012.

Enhanced Operating System Security Through Efficient and Fine-

grained Address Space Randomization. In USENIX Security.
[12] Petr Hosek and Cristian Cadar. 2015. VARAN the Unbelievable: An

Efficient N-version Execution Framework. In ASPLOS.
[13] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D.

Keromytis. 2014. ret2dir: Rethinking Kernel Isolation. In USENIX
Security.

[14] The Linux Kernel. 2007. Getting started with kmemcheck. https://www.
kernel.org/doc/Documentation/dev-tools/kmemcheck.rst. Accessed:
2018-01-22.

[15] The Linux Kernel. 2015. The Kernel Address Sanitizer (KASAN). https:
//www.kernel.org/doc/Documentation/dev-tools/kasan.rst. Accessed:
2018-01-22.

[16] The kernel development community. 2018. Coccinelle. https://static.
lwn.net/kerneldoc/dev-tools/coccinelle.html. Accessed: 2018-01-22.

[17] The kernel development community. 2018. Sparse. https://static.lwn.
net/kerneldoc/dev-tools/sparse.html. Accessed: 2018-01-22.

[18] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang,

and Dongyan Xu. 2015. Dual Execution for On the Fly Fine Grained

Execution Comparison. In ASPLOS.
[19] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and

Efficient Multi-Variant Execution Using Hardware-Assisted Process

Virtualization. In DSN.
[20] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias

Athanasopoulos. 2017. No Need to Hide: Protecting Safe Regions on

Commodity Hardware. In EuroSys.
[21] Greg Kroah-Hartman. 2018. The Linux Kernel Driver Inter-

face. https://www.kernel.org/doc/Documentation/process/
stable-api-nonsense.rst. Accessed: 2018-01-22.

[22] Anil Kurmus and Robby Zippel. 2014. A Tale of Two Kernels: Towards

Ending Kernel Hardening Wars with Split Kernel. In CCS.
[23] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim,

Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. 2016. LDX:

Causality Inference by Lightweight Dual Execution. In ASPLOS.

[24] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.

2014. SoK: Automated Software Diversity. In S&P.
[25] Giuliano Losa, Antonio Barbalace, Yuzhong Wen, Marina Sadini, Ho-

Ren Chuang, and Binoy Ravindran. 2017. Transparent Fault-Tolerance

using Intra-Machine Full-Software-Stack Replication on Commodity

Multicore Hardware. In ICDCS.
[26] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan:

Proactive Kernel Memory Initialization to Eliminate Data Leakages.

In CCS.
[27] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger,

Wenke Lee, and Michael Backes. 2017. Unleashing Use-Before-

Initialization Vulnerabilities in the Linux Kernel Using Targeted Stack

Spraying. In NDSS.
[28] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. SafeInit:

Comprehensive and Practical Mitigation of Uninitialized Read Vulner-

abilities. In NDSS.
[29] Ingo Molnar. 2015. fs/proc, core/debug: Don’t expose

absolute kernel addresses via wchan. https://git.kernel.
org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
b2f73922d119686323f14fbbe46587f863852328. Accessed: 2018-01-30.

[30] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Robbert

van Renesse, and Hans van Staveren. 1990. Amoeba: A Distributed

Operating System for the 1990s. IEEE Computer 23, 5 (May 1990).

[31] Peter Okech, Nicholas Mc Guire, Christof Fetzer, and William Okelo-

Odongo. 2013. Investigating execution path non-determinism in the

Linux kernel. In OSADL.
[32] Serkan Özkan. 2017. CVEDetails Linux Kernel. https://www.cvedetails.

com/product/47/Linux-Linux-Kernel.html?vendor_id=33. Accessed:
2018-01-22.

[33] Serkan Özkan. 2017. Linux Kernel : Security Vulnerabilities Pub-

lished In 2017 (Gain Information). https://www.cvedetails.com/
vulnerability-list.php?vendor_id=33&product_id=47&opginf=1&
year=2017. Accessed: 2018-04-30.

[34] Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. 2017. Digtool: A

Virtualization-Based Framework for Detecting Kernel Vulnerabilities.

In USENIX Security.
[35] S. Peiró, M. Muñoz, M. Masmano, and A. Crespo. 2014. Detecting Stack

based kernel Information leaks. In CISIS.
[36] Luıs Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar.

2019. MVEDSUA: Higher Availability Dynamic Software Updates via

Multi-Version Execution. In ASPLOS.
[37] Luıs Pina, Daniel Grumberg, Anastasios Andronidis, and Cristian

Cadar. 2017. A DSL Approach to Reconcile Equivalent Divergent

Program Executions. In USENIX ATC.
[38] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis

Polychronakis, and Vasileios P. Kemerlis. 2017. kR^X: Comprehensive

Kernel Protection Against Just-In-Time Code Reuse. In EuroSys.
[39] Babak Salamat. 2009. Multi-Variant Execution: Run-Time Defense

against Malicious Code Injection Attacks DISSERTATION. Ph.D. Disser-
tation. University of California, Irvine.

[40] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009.

Orchestra: Intrusion Detection Using Parallel Execution and Monitor-

ing of Program Variants in User-space. In EuroSys.
[41] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian

Schinzel, and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback

Fuzzing for OS Kernels. In USENIX Security.
[42] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker.

In USENIX ATC.
[43] Dannie M Stanley, Dongyan Xu, and Eugene H Spafford. 2013. Im-

proved kernel security through memory layout randomization. In

IPCCC.

https://www.kernel.org/doc/Documentation/dev-tools/kmemcheck.rst
https://www.kernel.org/doc/Documentation/dev-tools/kmemcheck.rst
https://www.kernel.org/doc/Documentation/dev-tools/kasan.rst
https://www.kernel.org/doc/Documentation/dev-tools/kasan.rst
https://static.lwn.net/kerneldoc/dev-tools/coccinelle.html
https://static.lwn.net/kerneldoc/dev-tools/coccinelle.html
https://static.lwn.net/kerneldoc/dev-tools/sparse.html
https://static.lwn.net/kerneldoc/dev-tools/sparse.html
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://www.kernel.org/doc/Documentation/process/stable-api-nonsense.rst
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2f73922d119686323f14fbbe46587f863852328
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2f73922d119686323f14fbbe46587f863852328
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b2f73922d119686323f14fbbe46587f863852328
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/vulnerability-list.php?vendor_id=33&product_id=47&opginf=1&year=2017
https://www.cvedetails.com/vulnerability-list.php?vendor_id=33&product_id=47&opginf=1&year=2017
https://www.cvedetails.com/vulnerability-list.php?vendor_id=33&product_id=47&opginf=1&year=2017

ASPLOS’19, April 13–17, 2019, Providence, RI, USA Österlund and Koning, et al.

[44] stress-ng team. 2018. stress-ng: a tool to load and stress a computer

system. http://kernel.ubuntu.com/~cking/stress-ng/. Accessed: 2018-
04-30.

[45] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK:

Eternal War in Memory. In S&P.
[46] The PaX Team. 2017. Grsecurity and PaX Configuration Op-

tions. https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_
and_PaX_Configuration_Options. Accessed: 2018-01-22.

[47] The PaX Team. 2018. PaX - gcc plugins galore. https://pax.grsecurity.
net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf. Accessed: 2018-

01-22.

[48] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos,

and Cristiano Giuffrida. 2018. Type-After-Type: Practical and Complete

Type-Safe Memory Reuse. In ACSAC.

[49] Maxime Villard. 2017. Kernel address space layout randomization.

https://blog.netbsd.org/tnf/entry/kernel_aslr_on_amd64. Accessed:
2018-02-05.

[50] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning your

gadgets: Complete ROP attack immunity with multi-variant execution.

IEEE TDSC 13, 4 (2016).

[51] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu,

Per Larsen, Bjorn De Sutter, and Michael Franz. 2016. Secure and

Efficient Application Monitoring and Replication. In USENIX ATC.
[52] Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere.

2013. GHUMVEE: Efficient, Effective, and Flexible Replication. In FPS.
[53] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan

Zhang, and Dawu Gu. 2015. From Collision To Exploitation: Unleash-

ing Use-After-Free Vulnerabilities in Linux Kernel. In CCS.

http://kernel.ubuntu.com/~cking/stress-ng/
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity_and_PaX_Configuration_Options
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://blog.netbsd.org/tnf/entry/kernel_aslr_on_amd64

	Abstract
	1 Introduction
	2 Background
	3 Threat model
	4 kMVX: Kernel multi-variant execution
	4.1 Syscall synchronization
	4.2 I/O sync
	4.3 Variant generation

	5 Implementation
	5.1 Variant generation
	5.2 Syscall sync
	5.3 I/O sync

	6 Evaluation
	6.1 Performance evaluation
	6.2 Security analysis

	7 Related work
	8 Conclusion
	Acknowledgments
	References

