
Type-After-Type: Practical and Complete
Type-Safe Memory Reuse

Erik van der Kouwe
Leiden University

e.van.der.kouwe@liacs.leidenuniv.nl

Taddeus Kroes
Vrije Universiteit Amsterdam

t.kroes@vu.nl

Chris Ouwehand
Vrije Universiteit Amsterdam

palaga@gmail.com

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl

ABSTRACT
Temporal memory errors, such as use-after-free bugs, are increas-
ingly popular among attackers and their exploitation is hard to
stop efficiently using current techniques. We present a new design,
called Type-After-Type, which builds on abstractions in produc-
tion allocators to provide complete temporal type safety for C/C++
programs—ensuring that memory reuse is always type safe—and
efficiently hinder temporal memory attacks. Type-After-Type uses
static analysis to determine the types of all heap and stack alloca-
tions, and replaces regular allocations with typed allocations that
never reuse memory previously used by other types. On the heap,
Type-After-Type splits available memory into separate pools for
each type. For the stack, Type-After-Type efficiently implements
type-safe memory reuse for the first time, pushing variables on
separate stacks according to their types, unless they are provably
safe (e.g., their address is not taken), in which case they are zero-
initialized and kept on a special stack. In our evaluation, we show
that Type-After-Type stops a variety of real-world temporal mem-
ory attacks and on SPEC CPU2006 incurs a performance overhead
of 4.3% and a memory overhead of 17.4% (geomean).

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security;

KEYWORDS
Use-after-free; uninitialized read; LLVM; computer systems; defense

ACM Reference Format:
Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cris-
tiano Giuffrida. 2018. Type-After-Type: Practical and Complete Type-Safe
Memory Reuse. In 2018 Annual Computer Security Applications Conference
(ACSAC ’18), December 3–7, 2018, San Juan, PR, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3274694.3274705

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274705

1 INTRODUCTION
Temporal errors allow attackers to abuse the reuse of memory over
time and rank among the most popular vulnerabilities in today’s
exploits. A typical example is use-after-free, where an attacker
can use a pointer to a deallocated block of memory to access re-
allocated memory (or vice versa). Current defenses are expensive
and/or limited in either scope or effectiveness (e.g., protecting only
the heap or vulnerable to memory massaging). We describe a new
production-ready solution which guarantees temporal type safety
to mitigate most such attacks at very low overhead (just 4.3% on
SPEC CPU2006 to protect both the stack and the heap).

Almost all temporal memory attacks exploit the lack of type
safety in memory reuse. For instance, a use-after-free vulnerabil-
ity in a C++ program may lead to VTable hijacking [37], because
attackers can massage the heap to reuse the memory of a previ-
ously freed object for an object of a different type. If the program
erroneously references the original object, it executes a method con-
trolled by the attacker. Likewise, common uninitialized read attacks
exploit memory reuse to leak sensitive information, such as return
addresses stored on the stack [27]. Temporal type safety prevents
such attacks by preventing reuse of memory for different types.

Defenses. Compared to spatial errors (e.g., buffer overflows),
which can be mitigated by checking bounds [20, 21], temporal
errors are much harder to stop. For a complete defense, we need
to track every pointer in memory and incur high overheads (over
40% in prior solutions [8, 24, 42, 45]). A cheaper alternative is to
probabilistically prevent memory reuse [4, 32], but such approaches
can be easily bypassed [24].

A more promising and practical mitigation of temporal errors is
the enforcement of type-safe memory reuse [2]. While this does not
prevent reuse-based memory accesses by an attacker altogether, it
ensures that such accesses are still type-safe, greatly constraining
the attacker and preventing attacks against temporal vulnerabilities.
However, current approaches [2] infer allocation types at runtime,
reducing accuracy and efficiency. More importantly, they protect
only the heap, leaving the stack vulnerable. The reason is that the
stack is notoriously performance-sensitive and extremely challeng-
ing to protect without incurring high overhead [27]. Unfortunately,
stack-based temporal attacks are popular and, for instance, Mi-
crosoft reports that, over the last ten years, 52% of the uninitialized
read vulnerabilities on its platform concerned the stack [28].

https://doi.org/10.1145/3274694.3274705
https://doi.org/10.1145/3274694.3274705

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Van der Kouwe et al.

Efficient Temporal Type Safety. Wepresent Type-After-Type, which
efficiently protects unmodified production programs against type-
unsafe exploitation of temporal memory errors. Type-After-Type is
the first system to enforce complete type-safe memory reuse, that
is (i) on both stack and heap and (ii) mitigating both use-after-free
and uninitialized reads. To determine the type of stack and heap
memory allocations, Type-After-Type uses static analysis. While
the type is explicit for stack allocations, on the heap we trace back-
ward to determine how the allocation size is computed and forward
to determine how the allocated memory will be used. We show
that these approaches are complementary and together can find
the heap allocation type in most cases. In the few remaining cases,
even inaccurate type inference may result in type-unsafe reuse but
only for the same callsite. This results in slightly lower security but
never breaks programs, a key property for a practical defense.

Aiming for practical deployment in production, Type-After-Type
supports common production allocators such as SafeStack [22]
and tcmalloc [12] (another key difference with prior efforts [2]).
In detail, our system replaces regular heap and stack allocations
with typed allocations that never reuse memory for a different
type. On the stack, we determine which variables can be used
in unsafe ways and create separate stacks with their own stack
pointers for each unsafe variable type. On the heap, we maintain
separate type-based pools to prevent an allocation of one type
from reusing memory that has previously been allocated as another
type, effectively thwarting VTable hijacking and similar widespread
temporal attacks. Together, these changes ensure that temporal
memory errors cannot be exploited to achieve type-unsafe access.

Type-After-Type makes a number of important improvements
compared to related systems. First of all, we combine protection of
the stack and the heap to efficiently provide full protection. Com-
pared to Cling [2], Type-After-Type protects the stack, improves
performance on the heap, and improves type and allocation wrap-
per detection. SafeCode’s type-safe heap reuse design relies on
perfect static analysis yielding a complete call graph and precise
points-to information, assumptions that are only realistic for small,
embedded software [9]. In contrast, Type-After-Type does not rely
on complete call graph or points-to analysis, allowing support for
complex, real-world applications. Finally, existing efficient stack
protections provide comparable performance to Type-After-Type’s
on both stack and heap, but even on the stack alone they cannot
address all the temporal vulnerabilities [22, 25, 27].

Contributions. This paper makes the following contributions:
• Type-After-Type, a novel design ensuring complete temporal
type safety for unmodified programs and seamless integra-
tion in production allocators.

• An evaluation which shows that we prevent attacks effec-
tively and efficiently (4.3% overhead on SPEC CPU2006);

• A comparison of the effectiveness of different approaches to
statically determine types of heap memory, important in a
variety of other applications;

• An open-source prototype implementation is available at
https://github.com/vusec/type-after-type, to serve as both a
practical defense mechanism (with already interest from the
industry), and a basis for further research.

2 BACKGROUND
In this section, we first discuss temporal memory errors and their
exploitation. Then, we discuss the importance of type safety in
unsafe languages such as C and C++, a property which Type-After-
Type preserves even in the presence of temporal memory errors.

2.1 Use-after-free
A use-after-free vulnerability exists whenever a program allows
a pointer to a previously deallocated block of memory (that is, a
dangling pointer) to be dereferenced. After deallocation, the allo-
cator eventually reuses memory for new objects. As a result, the
dangling pointer and the new live pointer refer to the same block
of memory. This means that writes to one object will corrupt the
other and reads may either leak sensitive data from the other object
or cause data from the other object to be misinterpreted.

As an example, we consider VTable hijacking, a common use-
after-free exploitation technique in real-world attacks [37]. In C++,
virtual method tables (VTables) help select an implementation of a
virtual method at runtime. If a program creates a dangling object
pointer, an attacker can craft an input that causes the program
to allocate blocks of memory and store fake VTable pointers into
them, a process known as heap [37] or stack [26] spraying (or mas-
saging [24] in a more targeted form). Afterwards, calls to virtual
methods use the fake VTable pointer supplied by the attacker, hi-
jacking control flow. This example demonstrates how a simple and
hard to find bug can lead to an attacker taking over control.

2.2 Uninitialized reads
Uninitialized reads are increasingly recognized as an important
threat to application security [26]. C does not initialize allocated
memory and, while C++ does automatically initialize class fields
under some circumstances, the semantics are complex and there
are still many cases where data is not automatically initialized [25].
Reading from uninitialized memory results in undefined behavior.
Compilers can only detect this in trivial cases [25].

While undefined, attackers can generally predict the result of
uninitialized reads. Old data remains in place when memory is
reused. An attacker can use heap or stack spraying/massaging to
control the uninitialized value read by the program.

2.3 Type safety
The attacks from the previous sections rely on the program inter-
preting one type as another. For both VTable hijacking and unini-
tialized reads, the attacker must spray/massage specific pointers
over the stack or the heap. However, programs almost never accept
pointers as input to the program. There is no legitimate use for this
because pointers are meaningless outside the owning address space.
Often, an attacker stores a pointer in a field that is not pointer-
typed, but rather a type that is more sensible for user input such as
an integer, a string or binary data. Temporal memory errors allow
this data to be reinterpreted as a pointer type. This is a crucial step
in allowing these attacks to succeed. Likewise, leaking a pointer
to break ASLR requires the attacker to force the program to write
its value to some output stream. Given that there is no legitimate
use for the pointer outside the program, this only happens because

https://github.com/vusec/type-after-type

Type-After-Type: Practical and Complete Type-Safe Memory Reuse ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

source
source

source

bitcode
bitcode

bitcode

binary
stack init lib
malloc lib

linker
malloc wrapper inliner
malloc type analyzer
safe stack initializer
unsafe stack splitter

compiler

linkerlinker

sizeof annotator

Figure 1: Overview of our framework; darker parts together
constitute Type-After-Type

the program interprets the pointer as some other type. These exam-
ples show that type-unsafe memory reuse is critical in exploiting
temporal memory errors, as also observed in prior work [2].

3 THREAT MODEL
We consider an attacker pursuing type-unsafe exploitation of tem-
poral memory error vulnerabilities in a victim program. We assume
the target program to be protected against other classes of vulnera-
bilities (e.g., buffer overflows) using orthogonal classes of defenses.
Hence, we assume that such vulnerabilities cannot be used to access
our metadata in the memory manager’s data structures (to keep
track of multiple typed heaps) and the thread local storage (to store
the stack pointers for multiple typed stacks). This is justified since
such vulnerabilities, when not adequately protected, can be already
used for end-to-end attacks without the need to perform further
violations of temporal type safety.

4 OVERVIEW
Type-After-Type takes the source code of an unmodified C/C++
program and compiles it into a hardened binary that enforces tem-
poral type safety if the developer specifies a new compiler flag. The
resulting binaries do not behave differently under normal circum-
stances, while modified memory management of both the heap and
the stacks ensure that an attacker cannot break type safety even in
the face of temporal memory errors.

Figure 1 shows the structure of our system. First, the build system
compiles source files into object files using the LLVM compiler’s
intermediate representation (also known as “bitcode”). This is pos-
sible by simply using the -flto clang/llvm compiler flag. We add
a small plugin in the compiler to prevent sizeof type informa-
tion from being lost in the translation to bitcode. After the linker
combines these object files into a single program, it runs the four
plugin passes that are part of Type-After-Type. These passes per-
form static analyses and use the results to modify the generated
code to support temporal type safety. Finally, the linker links two
libraries supplied by Type-After-Type to the final binary to support
the code generated by the passes.

The first two compiler passes alter heap allocations to make
them type safe. The Malloc Wrapper Inliner conservatively detects
memory allocation wrapper functions and inlines them into their
callers to ensure the standard allocation functions are called in the
function where the memory will actually be used. The Malloc Type

Analyzer determine how each allocated block of memory is used
and modifies the memory allocation call to specify the used type.
This pass is supported by our Malloc Library, which implements
type-based heap pools and exposes memory allocation functions
with an extra parameter to specify the type of the allocation.

The remaining two passes protect the stack from type-unsafe
memory reuse. The Safe Stack Initializer ensures that variables that
are provably used only in a safe way (i.e., their address is never
taken) are always initialized, so as to prevent exploitation of stack-
based uninitialized read vulnerabilities. The Unsafe Stack Splitter
deals with the remaining variables that may be used in unsafe ways
by moving them away from the regular stack to separate stacks
that only store variables of one type each. This pass is supported
by the Stack Initialization Library, which implements type-based
stack pools and exposes their stack pointers to our passes.

5 HEAP
On the heap, Type-After-Type ensures temporal type safety by split-
ting available memory into separate pools for each type. When an
application frees memory, we do not return it to the general free
list or the operating system but rather keep it available for future
allocations of the same type. We override the default memory allo-
cator to provide our own implementation of the standard memory
allocation functions, namely malloc, calloc, realloc, and the new
operator. However, in some cases a single function allocates mem-
ory for many different purposes, resulting in different types. To
make these functions type-aware, we detect such allocation wrap-
pers and inline them into their callers. This causes the allocation
functions to be called in the context where the memory will be
used, which simplifies the analysis.

5.1 Typed memory allocations
To make heap memory allocations type-aware, we scan the pro-
gram for calls to the standard memory allocation functions. For
each call, we detect the type of the allocated memory. We support
two static type detection methods: cast-based analysis and sizeof-
based analysis. If we can detect the type statically, we generate a
(secure) 64-bit type hash that is always the same for equal types and
(almost) always differs between different types. Otherwise, we use
a call site hash unique to that specific call. This is a hash of the name
of the function and the call’s position in the function, computed
at compile time. Finally, we modify the call to use a memory allo-
cation function with an additional type parameter, which receives
the hash value. In this way, we can make allocations type-aware
without any run-time analysis.

Our alternative memory allocation functions are supplied by
our custom Malloc Library which we link with the final binary,
as shown in Figure 1. Each corresponds to one of the standard
memory allocation functions with an additional type parameter.
In our design we can in principle use any underlying (slab-like)
memory allocator, if it is adapted to maintain separate pools for
each type and to not release deallocated memory to the operating
system. In particular, we demonstrate our design on top of the
tcmalloc [12] high-performance heap allocator, as detailed later in
Section 7. This strategy ensures that previously deallocatedmemory

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Van der Kouwe et al.

is never reused for an allocation with a different type specified,
introducing complete temporal type safety.

We cannot always determine the type of an allocation, for ex-
ample because every approach yields either no result or a typeless
pointer. In these cases we use a call site hash instead of the type
hash. We use the same approach for a pointer to bytes, char* in
C/C++, because this type is often used to store binary data without
regard for types. In this case, deallocated memory is only reused for
allocations from the same call site. As long as this call site always
allocates the same type of memory, this provides maximum type
safety at the cost of potentially increasing run-time and memory
overhead. In the worst case, multiple types are allocated at the
same call site. After our wrapper detection and inlining pass, (see
Section 5.2) this is rare in practice. In this case it is impossible
to guarantee complete temporal type safety, buy we still limit ex-
ploitability by having only allocations from the same call site share
a memory pool. Moreover, our prototype does not reuse memory
between size classes (see Section 7), providing protection between
objects of different sizes as well. This is similar to the limitations of
prior work [2], which (in all cases) suffers the same issue if there
are either identical allocation sizes between the types or if the call
stack is the same between the allocation of the different types.

To achieve type-safe memory reuse, newly allocated objects must
never overlap partially with previously allocated ones, because that
may cause different structure members with different type to end up
at the same memory locations. Fortunately, this is not an issue for
tcmalloc, which aligns allocations to their size class and prevents
cross-class reuse. For other allocators, the same is achieved by
adding the size to the type hash at run time.

new operator type detection. Whenever we encounter a memory-
allocating new operator, we use the return type generated by the
compiler to reliably determine the allocated type.

Cast-based type detection. For casts, we trace forward the return
values from memory allocation functions, looking for typecasts. We
consider both direct typecasts and indirect usage, for example if it
is typecast multiple times. We perform the following propagations:
for typecasts we consider how the result is used; for call arguments
we consider how the callee uses the parameter; and for return
statements we consider how callers use the return value. If we find
at least one type other than void* and char* and all such types
match, this is the final type. If there are inconsistent types, the
result is inconclusive and we log a type conflict.

sizeof-based type detection. Our final approach uses the sizeof
operator. This operator must be used in most heap allocations for
portability. We trace backwards from the size of each call to a stan-
dard allocation function to determine whether it is computed from
a sizeof operator. Although we cannot distinguish an array type
from its element type, this does not threaten type safety because
an array simply stores its elements next to each other.

Combined type detection. For allocations other than the new op-
erator, we perform both forward tracing for cast operations and
backward tracing for sizeof operators. If we find an array type, we
use its element type for consistency with sizeof. This reduces the
total number of types without affecting type safety. If we find multi-
ple different types, we select the one we consider most interesting;

that is, least likely to represent an intermediate step. In particular,
we consider pointers to integers to be less interesting because they
are often used as an intermediate type for data of other types such
as structures. We consider pointers to function pointers less inter-
esting because the C++ compiler often casts classes to this type to
call virtual methods. We consider derived classes more interesting
than their bases. If multiple types are equally interesting, we priori-
tize the sizeof approach because it has been deliberately specified
by the programmer for the truly allocated type. If we find multiple
equally interesting types from the same approach, we consider the
type uncertain and use a call site hash and log this as a type conflict.
Note that failure to detect the allocation type statically does not
necessarily mean that the object is unprotected; the fallback to a
call site hash still ensures type safety if the call always allocates
the same type (i.e., if it is not in a wrapper that cannot be inlined).

5.2 Wrapper detection and inlining
Many programs use wrappers to allocate memory, for example for
portability, error checking, and debugging. Wrappers hinder type
analysis of memory allocations. We identify memory allocation
wrappers and inline them into their callers. Programs implement
their own wrappers with different functionality and call signatures,
so there is no definite way to tell them apart from functions that
allocate memory for their own use. Moreover, there may even be
multiple levels of wrappers. Aiming for a practical mitigation, we
introduce a simple, but effective, overapproximation.

Our algorithm to detect allocators starts by initializing the set A
of allocator functions to the standard memory allocation functions.
We then enumerate all calls to these functions. If a call to an allocator
function occurs in a function that looks like it might be a wrapper,
we consider the calling function to be a possible wrapper unless
a sizeof expression is used to determine the allocated size. The
underlying assumption is that the sizeof operator indicates that
the function decides which type to allocate by itself, rather than
getting an allocation size passed from its caller or other context such
as object fields. We determine which functions look like wrappers
by looking for functions that return pointers. We add the possible
wrapper to A and repeat until we find no more new wrappers.
Finally, we tell the compiler to inline all calls to the functions in A
other than the standard allocation functions we started off with. By
doing so, we allow the type analysis from the previous section to
identify the right type as if the wrappers were not there.

As anticipated earlier, our approach may overestimate the num-
ber of wrappers. In C/C++, it is common to return a pointer even if
the caller does not own the memory it points to, even in functions
that allocate memory. However, inlining non-wrapper functions is
harmless for security purposes. The only risk is introducing addi-
tional performance overhead, but our measurements show that the
overhead from inlining wrappers is negligible (see Section 8.5).

In cases where we cannot detect a suitable type and use a call
site hash, inlining results in the creation of multiple pools (one for
each call site after inlining), effectively considering the call stack in
determining which heap pool is used—but without costly run-time
analysis. As a result, inlining increases security even in face of false
positives. As such, we believe that it is best to err on the side of
caution and inline everything that looks like a potential wrapper.

Type-After-Type: Practical and Complete Type-Safe Memory Reuse ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

6 STACK
Memory management on the stack is rather different than on the
heap. With just a single stack pointer per thread to specify which
parts are allocated, one cannot keep track of multiple pools of free
memory blocks as heap memory allocators do. Moreover, stack
allocations and deallocations are very frequent and must therefore
be much more efficient than those operations on the heap. Finally,
the compiler is expected to automatically deallocate stack variables
even if a function is exited prematurely by means of a longjmp call
or an exception. All these factors make type-safe memory reuse
on the stack much more challenging than on the heap, which also
explains why this was not attempted by prior efforts [2]. On the
other hand, stack variables always have their type specified at
allocation time, which means no type analysis is needed.

One more distinction between stack and heap memory that can
be used to improve performance of temporal type safety is that
stack variables may be used without explicit pointers to them. For
such variables, use-after-free errors are not possible. Therefore, as
an optimization to reduce the number of type pools, we can split up
the stack into safe and unsafe parts similar to what SafeStack [22]
does for a different purpose (buffer overflow mitigation).

6.1 Guaranteed initialization on the safe stack
The safe stack is the traditional type-unsafe stack and contains only
variables that do not have their address taken as well as “invisi-
ble” state such as return addresses and spilled registers. Because
these variables have mixed types, the stack requires alternative
protection to prevent type-unsafe reuse. The only threat for safe
stack variables is uninitialized reads, so our pass for such vari-
ables merely initializes them to zero. We rely on the compiler to
eliminate spurious zeroing. Prior zero initialization strategies have
shown that standard double-store elimination passes in modern
compilers are not sufficient to eliminate the zero-initialization over-
head on the stack (and even custom ones struggle) [27]. However,
Type-After-Type requires the optimizer to only deal with safe local
variables that do not have their address taken. In absence of pointer
aliasing problems, these variables are now much easier to analyze
than the general case, significantly improving the effectiveness of
standard double-store elimination and with no need for custom
(and less practical) optimizations to achieve good performance. Our
approach allows for very low (if any) overhead for safe variables,
which represent the vast majority of local variables in practice.

6.2 Typed unsafe stacks
We protect variables on the unsafe stack by creating a separate
stack for each type. Although we reserve stack memory for each
type, in practice the OS allocates no physical pages for parts that
are never used. For each type, we create a stack pointer variable in
the thread-local storage (TLS), allowing each thread to keep track
of its own typed stacks. To allocate an unsafe stack variable, we
subtract its size from the correct typed stack pointer and replace
references to the variable with the result. When a function returns,
we restore the stack pointers for all unsafe stacks it used. In cases
where a function may be the target of a longjmp call or contains
an exception handler, we restore all unsafe stacks to their original

positions. While this is relatively expensive if there are many types,
our experiments have shown that this is generally rare.

Our Stack Initialization Library (shown in Figure 1) initializes
the typed stacks used by instrumented programs when the program
starts or a new thread is created. It allocates space for the typed
stacks and sets up initial stack pointers. Each typed stack is preceded
by an inaccessible guard page, preventing the stacks from growing
into each other or other memory objects. Finally, whenever a thread
is destroyed, we free its stacks to prevent memory leakage.

Like on the heap, we prevent partial overlap between prior and
current memory objects. In particular, we protect variable-length
arrays by rounding the stack pointer to a common multiple of the
stack alignment and the element size. Though this causes extra
memory overhead, in practice we found that the element size is
almost always a multiple of 8 bytes, which means at most just one
extra array element is needed to safely pad array allocations.

7 IMPLEMENTATION
We have implemented a prototype of the Type-After-Type design
described in Sections 5 and 6. Our system is based on the LLVM
compiler framework [23]. We use link-time optimizations, which
causes LLVM to link together programs in its intermediate rep-
resentation (also known as “bitcode”). This allows our compiler
passes to run on the full program rather than one source file at a
time, which simplifies inter-procedural static analysis.

Our heap allocator prototype is based on the high-performance
tcmalloc [12] memory allocator. This memory allocator is widely
used in production, for example in Google products such as the
Chrome browser [14]. On the front-end side, we have extended
the API (that is, the allocation functions with names starting with
tc_) with tc_typed_ versions that take an additional parameter
to specify the type hash. Legacy allocation functions simply call
these new versions with the type hash set to zero. This allows
uninstrumented (and therefore unprotected) libraries to be used
with protected binaries. These unsafe versions are also used when-
ever our pass cannot statically determine whether a call targets a
memory allocation function, which is the case for indirect calls. We
modified the memory management back-end to create one central
free list for each known type hash and to have each thread cache
maintain per-type free lists. The use of per-type free lists ensures
that we do not reuse freedmemory for allocations of a different type.
To store the free lists, we use a hash table in both cases, indexed
by the type hash. In addition to the added protection, tcmalloc’s
design also prevents memory reuse between different allocation
size classes. This gives extra security in cases where the type cannot
be detected; if the same call site allocates multiple types that fall in
different size classes, memory reuse is still safe.

Our typed stacks are based on the SafeStack [22] pass included in
the LLVM compiler. We modified this pass to create multiple unsafe
stacks, each with their own entry in the thread local storage (TLS)
to keep track of the stack pointer. We also create two additional
TLS variables, placed before the first and after the last stack pointer.
This allows our static library to initialize all stack pointers without
knowing exactly which typed stacks exist.

We believe our Type-After-Type prototype offers substantial
security improvements with practical, evolutionary changes to

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Van der Kouwe et al.

CVE Type Source Mitigated
2007-1521 Use-after-free FreeSentry Completely
2007-1522 Use-after-free FreeSentry Completely
2007-1711 Use-after-free FreeSentry Completely
2009-0749 Use-after-free FreeSentry Completely
2010-2939 Use-after-free DangSan Completely
2011-0065 Use-after-free VTPin Completely
2012-0469 Use-after-free VTPin Completely
2013-0912 Type confusion Pwn2own Exploit
2016-4342 Stack uninit read SafeInit Completely
2016-4486 Stack uninit read SafeInit Completely
2016-5337 Stack uninit read SafeInit Yes
Table 1: Vulnerabilities thwarted by Type-After-Type.

production allocators and we plan to seek mainline adoption in
both tcmalloc [12] and SafeStack [22].

8 EVALUATION
To evaluate our Type-After-Type prototype, we performed a num-
ber of experiments. For our evaluation, we used Intel Xeon E5-2630
machines with 16 cores at 2.40 GHz with 64 GB of memory, running
64-bit CentOS Linux 7 with kernel version 3.10.0. In this section, we
first consider Type-After-Type’s security guarantees. Next, we dis-
cuss the effectiveness of our type and wrapper detection algorithms.
Then, we consider Type-After-Type’s performance and memory
guarantees. Finally, we present results for a Firefox case study.

8.1 Security
We evaluated the effectiveness of Type-After-Type by examining a
number of Common Vulnerabilities and Exposures (CVEs) [7]. In
particular, we considered the CVEs examined by related work in
the past 10 years and focused on those for which manual program
inspection was realistic in the time available. In fact, rather than
running known or self-crafted exploits to determine whether they
would be (trivially) stopped, we decided to manually analyze the
CVEs to determine if and under which conditions they would still
be exploitable. This approach is time-consuming, but the benefit is
that it allows us to determine not only if existing exploits still work,
but also whether attackers could craft new Type-After-Type-aware
exploits by taking into account the changes in memory layout.

For all the temporal heap CVEs (the first 7 entries) in Table 1,
Type-After-Type’s heap allocator and type analysis completely pre-
vent attacks. Some programs implement a custom (e.g., slab-based)
heap allocator. Type-After-Type supports system allocator func-
tions (e.g., malloc and free) and their wrappers, but does not
derive custom allocator semantics. To mitigate the vulnerabilities,
the programmer must replace the use of custom allocators with
direct use of the system allocator. This is typically configurable
by means of a configuration flag before compilation. Alternatively,
the programmer can specify allocations functions to our protec-
tion pass. For example, Firefox defines a custom C++ new operator
that uses moz_xmalloc to perform allocations. Since these are used
consistently, supporting them is straightforward.

Besides temporal memory attacks, Type-After-Type complicates
any other exploits that rely on spatial type locality. For instance,
it stops the type confusion exploit against Chrome of the 2013

Pwn2Own competition, as it relies on type-unsafe heap massag-
ing. While one cannot rule out a Type-After-Type-aware exploit,
this is challenging as the CVE only allows limited out-of-bounds
read/write accesses past the vulnerable object. Hence, landing neigh-
boring objects of an attacker-controlled type is crucial to (i) break
ASLR (out-of-bounds read) and (ii) corrupt sensitive data (out-of-
bounds write) for the exploit.

The final 3 entries in Table 1 describe stack CVEs. Type-After-
Type’s stack allocator and precise type analysis completely prevent
attacks based on the first two CVEs. The third CVE is more interest-
ing, as an attacker only needs to reuse (even type-safe) memorywith
non-zero values to lure the program into reading a stack-allocated
string without a '\0' (uninitialized) terminator. This allows a Type-
After-Type-aware attacker to craft a buffer overread primitive and
leak information. Nonetheless, thanks to Type-After-Type, the at-
tacker can again only access neighboring objects of the same type.
This stops the exploit and frustrates more sophisticated exploita-
tion attempts to leak "interesting" information. We note that our
analysis here focuses on uninitialized reads for the stack, where,
in contrast to the heap, such CVEs are more common than use-
after-frees. Nonetheless, unlike existing practical heap-based [2]
and stack-based protection mechanisms [22, 25, 27], Type-After-
Type can also stop attacks based on stack use-after-frees such as
CVE-2011-2013 and CVE-2014-3153.

8.2 Type detection
As discussed in Section 5.1, we use several approaches to detect
the types of heap allocations. In this section, we determine to what
extent our static type detection techniques complement each other.

We measured our static type detection results for the SPEC
CPU2006 [18] benchmarks. Our system manages to detect the type
for 86.9% of the new call sites and 56.8% of the other call sites. In the
remaining cases, Type-After-Type falls back to run-time type detec-
tion (reducing performance, however marginally). Over all 6,793
non-new call sites together, cast-based detection yields 3,609 types
and sizeof-based detection yields 1,311. Although this shows that
cast-based detection is more effective overall, a number of bench-
marks (milc, sjeng, libquantum, and h264ref) have the majority of
their call sites resolved by the sizeof approach. This shows that
the two approaches complement each other and the most effective
one is subject to coding style.

To verify our type detection accuracy absent complete ground
truth, we cross-check the consistency of the results between our
two approaches. We found the typecast approach and the sizeof
approach to yield slightly inconsistent results only for two bench-
marks: povray (42 out of 897 call sites where both are available)
and h264ref (9 out of 43). Given the highly consistent results, we
conclude our type detection is reasonably accurate for the vast
majority of the call sites.

One other point to note is that we do not consider char* to be a
detected type. We cannot distinguish it from the untyped pointer
void* because LLVM uses the same representation for both. The
char type is also not commonly used with the sizeof operator
because the C standard guarantees the type to be a single byte.
Moreover, it is not desirable to pool char* allocations from different
allocation sites because they often store untyped binary data in

Type-After-Type: Practical and Complete Type-Safe Memory Reuse ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

practice. The fact that we cannot consider char* as a separate type
does mean that our type accuracy could not reach 100% even with
perfect type detection. A similar situation holds for allocations
with the new allocator because the new char[] array allocators
also yields an effectively typeless block of bytes.

8.3 Wrapper detection and inlining
Over all the SPEC CPU2006 [18] benchmarks, we found 802 possible
wrapper functions. This number is considerably larger than the
number of real wrapper functions one would expect, confirming our
expectation that our wrapper detection yields many false positives.
As discussed in Section 5.2, such false positives do not harm security
(in fact, they may even improve it), the only risk being that they
may negatively impact performance.

The total number of allocation call sites increases from 6,104 to
8,243, an increase of 35%. This means that we inlined 2,139 calls to
potential wrappers. While this seems like a relatively small increase,
the impact is much larger for some specific benchmarks. In partic-
ular, the number of call sites becomes several times the original
number for perlbench, gobmk, and povray. To verify our wrapper
inlining accuracy absent a complete ground truth, we can check
whether inlining a potential wrapper allow us to determine the
type for an allocation site. Over all benchmarks, wrapper inlining
increases the number of call sites with a type identified from 3,474
to 5,121, which suggests we do find a large number of true wrappers.
This serves as a lower bound for the number of allocation call sites
we managed to move out of wrappers because there may also be
even more cases where either our static analysis is insufficient to
determine the type after inlining or the type is char*. Inlining is
especially effective for type detection for perlbench, gobmk, and
povray. We conclude that our wrapper inlining is effective in reduc-
ing the impact of wrapper functions around memory allocations
for these particular cases.

8.4 Memory overhead
Figure 2 shows our memory overhead on SPEC CPU2006 [18]. We
compare our results against a baseline without instrumentation,
using an unmodified version of the tcmalloc memory allocator [12].
We opted to use tcmalloc as a baseline rather than the less perfor-
mance and memory-efficient system default allocator, given that
ascribing the improvements resulting from the use of tcmalloc to
our own system would give results that do not provide much infor-
mation about the overhead incurred by type-safe memory reuse.

We measured the peak residual set size (RSS) using Linux’ time
utility to determine how much memory each benchmark requires.
The geomean memory overhead for heap protection is just 17.3%,
while stack protection incurs negligible overhead. Combined protec-
tion of both the stack and the heap incurs 17.4% memory overhead,
just like heap protection by itself. As such, we conclude that over-
all memory overhead is reasonable given the strong protections
offered by Type-After-Type.

8.5 Run-time overhead
To assess Type-After-Type’s performance impact, we instrumented
all C/C++ benchmarks of the SPEC CPU2006 [18] benchmarking

0
10
20
30
40
50
60

p
e

rl
b

en
ch

b
zi

p
2

gc
c

m
cf

m
ilc

n
am

d
go

b
m

k
d

e
al

II
so

p
le

x
p

o
vr

ay
h

m
m

e
r

sj
e

n
g

lib
q

u
an

tu
m

h
2

6
4

re
f

lb
m

o
m

n
et

p
p

as
ta

r
sp

h
in

x3
xa

la
n

cb
m

k
ge

o
m

ea
n

m
em

o
ry

 o
ve

rh
ea

d
 (

%
)

heap stack heap+stack

284 286

Figure 2: Memory overhead on SPEC CPU2006

-10

0

10

20

30

40

p
e

rl
b

en
ch

b
zi

p
2

gc
c

m
cf

m
ilc

n
am

d
go

b
m

k
d

e
al

II
so

p
le

x
p

o
vr

ay
h

m
m

e
r

sj
en

g
lib

q
u

an
tu

m
h

2
6

4
re

f
lb

m
o

m
n

et
p

p
as

ta
r

sp
h

in
x3

xa
la

n
cb

m
k

ge
o

m
e

an

ru
n

-t
im

e
o

ve
rh

ea
d

 (
%

)

heap stack heap+stack

Figure 3: Performance overhead on SPEC CPU2006

suite using the default workload (reference). Again, we compare
against a baseline using tcmalloc.

Figure 3 shows the results of our performance measurements.
The geometric mean of the overhead of our solution compared to
the baseline is 2.0% for heap protection, 2.0% for stack protection
and 4.3% for both. We used our wrapper inlining pass to measure
these results. Without wrapper inlining, the geometric mean of
the overhead is 2.0% for just heap protection and 4.1% to protect
both the heap and the stack. These numbers show that both heap
and stack protection incur very low overhead even on memory-
intensive benchmarks like SPEC’s, reducing the performance cost to
address temporal memory errors to a level where practical adoption
is viable. It also shows that, despite our choice to to favor security
over performance in wrapper detection, the performance impact of
wrapper inlining is negligible.

Although our overall run-time overhead is very low, two bench-
marks do incur substantial overhead. On perlbench, Type-After-
Type incurs a total overhead of 24.2%, mostly due to stack protection.
We found that one of the functions that executes much of the time
in perlbench consists of a giant switch statement, in which some
cases use array buffers that must be moved to the typed unsafe
stacks. For each type of these buffers, Type-After-Type subtracts
the buffer sizes from the typed stack pointer and stores the new

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Van der Kouwe et al.

stack pointer as a local variable to allow access to the variables
allocated on the unsafe stack. Unfortunately, the unusually large
number of typed stacks used in the function causes the compiler to
allocate these local variables on the safe stack rather than in CPU
registers. Therefore, each buffer access requires an extra memory
access to look up the typed stack pointer. This is not an issue for
programs with a reasonably simple inner loop. Moreover, it could
be solved with an improved register allocator assigning registers
locally for the individual switch cases. The second case is dealII,
where Type-After-Type incurs 35.7% run-time overhead, entirely
due to heap protection. It spends an excessive amount of time
performing an operation specific to tcmalloc, namely scavenging
the per-thread free lists for entries to move to the central free list.
As such, the particular sequence of allocations and deallocations
in dealII causes pathological behavior in tcmalloc (amplified by
typed heaps), which could be fixed by fine-tuning tcmalloc’s thread
cache scavenging settings. Moreover, in this particular case the
operation could in principle be removed entirely because dealII is
not multithreaded. Doing so eliminates almost all heap protection
performance overhead. We conclude that, although Type-After-
Type incurs non-trivial overhead in specific situations, these are
pathological cases that in principle can be solved by fine-tuning
the register or memory allocator to such scenarios.

To compare performance against state-of-the-art (heap-based)
solutions, Cling [2] in particular, we also compare our heap protec-
tion performance against the system default allocator rather than
our regular baseline. Cling also compares against the system default
allocator, which means these measurements cannot distinguish the
overhead from type-safe memory reuse from the speedup intro-
duced by using a more efficient memory allocator. Our geometric
mean over all benchmarks is -6.0%, so the benefit from using an
efficient allocator (tcmalloc) is larger than the overhead introduced
by Type-After-Type, resulting in an overall speedup. Our geometric
mean over the SPEC CPU2006 benchmarks evaluated by Cling is
-7.1% on the heap and -5.8% for stack+heap, while Cling achieves
-4.3% for just the heap. This means that Type-After-Type compares
well to the state of the art, and achieves a greater speedup compared
to the system default despite the complete (heap+stack) protection.

8.6 Firefox case study
In addition to our SPEC CPU2006 experiments, we applied our in-
strumentation to the Mozilla Firefox browser [41] to measure the
impact on a memory-demanding application that is heavily object-
oriented and a major target for attacks based on temporal memory
errors. We ran the Sunspider 1.0.2 [16], Octane 2.0 [15], and Dro-
maeo [11] Javascript and DOM benchmarks to test its performance.
These are demanding CPU-intensive workloads that provide a good
indication of the worst-case performance impact.

Table 2 shows our results for heap and stack protection on Firefox
47.0. Unfortunately, we could only apply stack protection to Firefox’
main binary and not to its libraries, because our SafeStack baseline
does not support shared libraries and Firefox support for building
with static libraries is currently broken. We do not inline wrappers
for Firefox because crashes, but fortunately overhead from inlining
wrappers is negligible (see Section 8.5) so we expect this has little
impact on the results. Type-After-Type can protect Firefox with

benchmark overhead
heap stack stack+heap

SunSpider 2.2% 1.9% 2.9%
Octane 2.0 -0.7% 0.9% 0.9%
Dromaeo JS 4.0% -1.6% 5.2%
Dromaeo DOM 0.6% -1.4% 0.9%

Table 2: Overhead% Firefox (stack only main binary).

very low overhead even for these compute-intensive workloads.
Moverover, in most practical settings these overheads will be hidden
by I/O latencies. As such, we believe that our system is well within
the range of acceptable overheads for production use. However,
we caution the reader that the work performed in Firefox’ shared
libraries is not neglible, and that extending the stack protection to
these libraries is likely to increase overhead. Nonetheless, we do
not expect the overheads to deviate significantly from those of an
improved SafeStack, a now-standard protection mechanism in the
clang/llvm production compiler.

In some cases, we measured negative overheads even though the
instrumentation we add should not make the program faster. These
results are consistent between measurements and we believe this
to be caused by the performance variations due to small differences
in memory layout [29] or possibly type-based pooling improving
locality and thus cache performance in certain scenarios.

Safestack does not support shared libraries because the linker
does not merge the thread local variable used to store the unsafe
stack pointer between the main binary and the shared libraries,
resulting in each having their own local unsafe stack pointer, which
is currently not initialized by the shared libraries. This results in a
crash the first time a variable is stored on the unsafe stack.

It should be noted that the limitation that we cannot use our
stack protection for shared libraries (inherited by SafeStack) is not
fundamental. The best solution would be to modify the linker to
make it merge thread local variables in shared libraries with existing
thread local variables with the same name. Unfortunately, however,
modifying the linker is not practical because the resulting binaries
would not work on existing systems. However, it is also possible to
work around this issue. One could add code in the shared libraries
to make them initialize their own stack pointers for each existing
thread when the library is loaded. In addition, one would need
to keep track of a list of libraries in the main binary to initialize
stack pointers for all shared libraries whenever a new thread is
created. In addition, this would allow one to create a callback for
stack unwinding that unwinds all stacks from all libraries rather
than just the one in the current module. This solution would allow
Safestack to protect shared libraries andwould be equally applicable
to our solution, which uses multiple unsafe stacks.

9 LIMITATIONS
Although our system canmitigate a wide range of temporal memory
safety errors at a very low performance cost and is compatible with
a wide range of programs, our design has a number of limitations
which we will discuss in this section.

First, there is a number of attacks against temporal memory
errors that our system cannot prevent. One instance is the situation

Type-After-Type: Practical and Complete Type-Safe Memory Reuse ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

where the memory error can be exploited without violating type
safety. For example, in case of use-after-free vulnerabilities, this
means that the attacker can use a dangling pointer to manipulate
a live object of the same type. Given that pointers are generally
not user-controllable, this means that the attacker will generally
not be able to manipulate pointers, denying the attacker access
to a powerful arbitrary read and/or write primitive and making
them unable to leak pointers to defeat address space layout random-
ization (ASLR). Instead, the attacker has to resort to more subtle
attacks, such as changing a field after its value has been verified to
be safe (Time-of-check-to-time-of-use). While such attacks will be
possible in some cases, they do depend on being able to perform
very particular sequences of operations, dramatically shrinking the
attack surface of modern exploits. A second instance where we can-
not prevent attacks is the case where the programmers themselves
introduce deliberate type unsafety. In particular, this can happen
due to the use of implicit or explicit C/C++ unions. As the previ-
ous case, however, an attack against such type unsafety depends
on a very specific sequence of operations. Normally, the attacker
can generally perform arbitrary type-unsafe accesses via memory
massaging, while with Type-After-Type (type-unsafe) massaging
is impossible and only unsafe type conversions introduced by the
programmer can be abused.

A second limitation is the inability to handle memory allocated
directly from the OS through system calls such as brk and mmap.
However, the brk call is rarely used directly by applications due to
its inability to deallocate memory out-of-order. The other cases are
merely implementation limitations and they could be handled by
intercepting calls such as mmap and similar.

A third limitation is the fact that, if a call site can allocatemultiple
types, we cannot prevent type-unsafe reuse. In this case, when we
detect multiple types can be allocated we use a call site hash rather
than a type hash to keep the typed memory pools free from other
types, but memory can be reused for the same call site. In many
cases, our wrapper detection and inlining prevents this issue by
duplicating the call site for each type allocated, but there are some
cases that cannot be handled by inlining. An example would be the
case where the function selects a type in an if or switch statement
that cannot be eliminated by optimizations after inlining. This
limitation is in common with Cling [2], which cannot distinguish
types on identical allocation call stacks. However, unlike Cling, in
our case this is a limitation that could in principle be addressed. If we
detect such a case, we could duplicate basic blocks to create different
allocation call sites for each type-specific path in the control flow
graph leading to the original call site. This would effectively amount
to inlining at a finer granularity.

A fourth limitation is that we do not handle (less common) indi-
rect calls to allocation functions or wrappers. This means that in the
former case the allocated memory will be typeless and shared with
other uninstrumented allocations (e.g., in uninstrumented libraries)
while in the latter case a call site hash will be generated rather than
a type hash, possibly resulting in the issues described earlier. This
issue could be solved through additional static analysis to determine
which function pointers may be passed to which indirect call sites,
for example using type-based callgraph analysis [25]. One could
then add code to check whether the predicted callee is correct and,
if so, perform a direct call instead. This direct call can then be used

in the analysis performed to detect and inline wrappers and can be
identified as an allocation call site in our type detection pass.

A fifth limitation is the fact that we cannot determine types if
the protected program uses an arbitrary (non-wrapper-like) custom
memory allocator. Fortunately, such approaches are often unnec-
essary with tcmalloc, which is often considerably faster than the
system default allocator in handling cases where such constructs
are often used. Therefore, disabling custom memory allocators—
which generally requires only small configuration changes—is a
simple solution to this issue.

Finally, our solution requires source code as it requires compiler-
managed type information. While Cling [2] works around this issue
by using call stack hashes as proxies for heap object types, this is not
a viable solution for the frequent stack allocations that we support.
As such, we believe the source code requirement is inherent to a
complete temporal type safety solution.

10 RELATEDWORK
With the rise of use-after-free and similar exploits in recent years
comes increasing interest in temporal memory safety in the research
community. While it is impossible to exhaustively list all related
publications, we distinguish between defenses that make it hard for
the attacker to (re-)allocate useful areas of memory, defenses that
remove dangling pointers, defenses that explicitly check the validity
of objects on dereferences, and defenses that explicitly initialize
memory prior to reuse.

Secure memory allocators. Google Chrome [14] uses‘ the Parti-
tionAlloc allocation library, which, like Type-After-Type, partitions
heap allocations by class. However, the class has to be manually
specified by the developer for each allocation. In contrast, Type-
After-Type only requires the build system to specify the correct
compiler (flags), which makes adoption considerably easier.

Like Type-After-Type, Cling [2] offers type-safe memory reuse,
but with important differences. First, it does not at all support the
stack, leaving software vulnerable to widespread temporal stack
vulnerabilities (and this is also the case for more recent variants
focusing only on heap C++ objects [35]). Second, it is more limited
in the detection of types and wrappers. In particular, it infers in-
formation about allocated objects and wrapper functions based on
the run-time callstack, which is less efficient and less effective than
Type-After-Type’s compile-time analysis. Moreover, Cling can only
detect wrappers at runtime when it observes a single allocation
site that requests multiple allocation sizes, which is neither always
reliable, nor immediate, introducing a window of vulnerability. It
also limits the number of levels of wrappers supported. In contrast,
Type-After-Type does not rely on sizes for wrapper detection at all.
Finally, Cling completely replaces the existing allocator with a new
implementation, while Type-After-Type’s prototype builds on the
high-performance tcmalloc allocator widely used in production.

An early secure allocator is DieHard [4], which uses random-
ization to provide probabilistic temporal safety. After DieHard, a
variety of randomization-based secure allocators have emerged.
Most of them focus on the heap, but some exclusively target the
stack [6]. Its most direct successor, DieHarder [32] built has fairly
high overhead (up to 2x and 20% geomean on SPECint). Moreover,

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Van der Kouwe et al.

like all the other randomized allocators and also more recent ap-
proaches such as ASan [38], this approach can be bypassed by
massaging memory to force type-unsafe reuse.

SafeCode [9] offers a compiler-based system for type-safe mem-
ory reuse on the heap which depends on data structure analysis
(DSA). It uses a custom pool allocator that frees a pool after the
last referencing pointer is dropped. The approach relies on the
assumption that static points-to analysis is capable of perfectly
determining control flow (including indirect calls) and data flow.
Although this may hold for some embedded applications (which
are the target of SafeCode), this is unfortunately not the case for
complex programs, as DSA has been shown to “lose field sensitivity
on up to 70.5% of tracked struct objects” [10]. Our analysis, while
simpler, has better worst-case performance and is type safe as long
as wrappers are inlined correctly. Moreover, our solution performs
type-safe allocations on both the stack and the heap.

Dangling pointers. Rather than securing the allocation process,
some defenses invalidate all pointers to a freed object immedi-
ately [8, 24, 42, 45]. Unfortunately, this strategy incurs non-trivial
overhead (due to pointer tracking or page protection changes),
especially in the presence of multi-threading. Compared to Dan-
gSan [42] and Oscar [8], the most advanced solutions to date, the
overhead of Type-After-Type is an order of magnitude lower. Other
approaches [3, 30, 43, 44] instead check the validity of pointers on
a dereference, but this results in even higher overhead (e.g., 48% on
average for CETS [30]).

Uninitialized reads. Finally, defenses may ensure that even if
predictable memory reuse is possible and dangling pointers remain,
the reused memory areas do not contain anything interesting—by
re-initializing the pages either at deallocation time [32], or just prior
to their use by untrusted code [25, 27]. Doing so at deallocation time
is expensive, and recent approaches instead opt to zero out memory
selectively and “just-in-time”. For instance, UniSan [25] protects
memory disclosures from the kernel by zeroing out memory only if
such bytes may cross into userspace without initialization. Likewise,
SafeInit [27] zeros out memory at allocation time, only if there is a
chance that the program may use it uninitialized.

Compared to Type-After-Type, SafeInit (the state-of-the-art unini-
tialized read protection for generic programs) cannot address use-
after-free vulnerabilities. In addition, SafeInit’s optimization passes
have trouble scaling to large buffers on the stack involved in com-
plex data flows, resulting in non-trivial overhead when unneces-
sarily zeroing unused stack buffers [27]. Type-After-Type moves
such buffers to a per-type stack, eliminating unnecessary zero ini-
tialization and improving performance in such problematic (but
common) cases.

Garbage collection. One approach to prevent dangling pointers
is to automatically free objects whenever this is safe to do. Garbage
collection is widely used in languages designed to be safe, such
as Java [34] and Go [1]. In all cases, however, safe languages se-
mantically differ too much from traditional unsafe languages such
as C and C++ to allow programs to be converted automatically,
resulting in a considerable porting effort [36]. The same holds for
new dialects of C or C++, such as Cyclone [19] and CCured [31],
which change memory management and introduce new primitives

to make the C language safer. However, just like with new safe lan-
guages, considerable porting effort is needed so existing programs
are rarely converted in practice.

An alternative is to keep the programming language as-is, but
add a garbage collection library such as the Boehm garbage collec-
tor [5]. This approach has already been adopted in somemainstream
browsers, such as MemGC in Microsoft’s Edge browser [40] and
Oilpan in Google’s Chrome browser [13]. Unfortunately, however,
C and C++ do not keep track of the necessary type information and
many common C idioms as well as some compiler optimizations
make it impossible for the garbage collector to reliably distinguish
pointers and integers, which is necessary to be able to correctly
find references to objects. As such, in practice non-trivial programs
must either be developed from scratch to work with a conservative
collector or existing programs must be modified to provide annota-
tions that give the garbage collector the information that it needs.
Conservative garbage collectors also introduce side channels that
may be abused by attackers to bypass address space layout random-
ization (ASLR) [17]. As such, garbage collectors offer neither the
convenience nor the security provided by Type-After-Type.

Finally, there is the option of keeping explicit memory manage-
ment but delaying free operations until a fixed point in the program
is reached to prevent memory reuse within the same scope as the
free operation. This delayed free approach is currently used in Mi-
crosoft’s Internet Explorer [39]. Although this is a simple solution
that raises the bar for attackers, memory is reused eventually so that
references used outside the scope where they were created are still
a threat. Moreover, this approach allows memory usage to increase
without bound. This may be useful for attackers to perform heap
spraying or craft allocation oracles [33]. As such, Type-After-Type
offers better security than delay free approaches.

11 CONCLUSION
Temporal memory errors are a major threat to software security.
Existing solutions to address this problem either incur excessive
overhead for practical use, can be subverted via memory massag-
ing, or do not provide complete protection for stack and heap. We
presented Type-After-Type, a novel design to address temporal
memory errors through practical and complete type-safe memory
reuse. We used compiler instrumentation to create separate stacks
for each type and to annotate heap allocationswith a type to support
per-type heap pools. We showed that Type-After-Type achieves
complete temporal type safety at just 4.3% overhead, matching the
golden 5% standard for real-world production deployment.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their com-
ments. This project was supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agree-
ment No. 786669 (ReAct), by the United States Office of Naval Re-
search (ONR) under contract N00014-17-1-2782, by Cisco Systems,
Inc. through grant #1138109, and by the Netherlands Organisa-
tion for Scientific Research through grants NWO 639.023.309 VICI
“Dowsing” and NWO 639.021.753 VENI “PantaRhei”. This paper re-
flects only the authors’ view. The funding agencies are not respon-
sible for any use that may be made of the information it contains.

Type-After-Type: Practical and Complete Type-Safe Memory Reuse ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

REFERENCES
[1] [n. d.]. The Go Programming Language. https://www.golang.org.
[2] Periklis Akritidis. 2010. Cling: AMemoryAllocator toMitigate Dangling Pointers..

In USENIX Security.
[3] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. 1994. Efficient Detection

of All Pointer and Array Access Errors. SIGPLAN Not. 29, 6 (June 1994), 290–301.
https://doi.org/10.1145/773473.178446

[4] Emery D Berger and Benjamin G Zorn. 2006. DieHard: Probabilistic Memory
Safety for Unsafe Languages. In PLDI.

[5] Hans Boehm. [n. d.]. A garbage collector for C and C++. http://www.hboehm.
info/gc/.

[6] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
2015. StackArmor: Comprehensive Protection From Stack-based Memory Error
Vulnerabilities for Binaries.. In NDSS.

[7] The MITRE Corporation. [n. d.]. Common Vulnerabilities and Exposures. http:
//cve.mitre.org/.

[8] Thurston HY Dang, Petros Maniatis, and David Wagner. 2017. Oscar: A Practical
Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In USENIX
Security.

[9] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. 2005. Mem-
ory safety without garbage collection for embedded applications. ACM Transac-
tions on Embedded Computing Systems (TECS) 4, 1 (2005), 73–111.

[10] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control jujutsu: On the
weaknesses of fine-grained control flow integrity. In CCS.

[11] The Mozilla Foundation. [n. d.]. DROMAEO, JavaScript Performance Testing.
https://www.webkit.org/perf/sunspider/sunspider.html.

[12] S. Ghemawat and P. Menage. [n. d.]. Thread-caching Malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

[13] Google. [n. d.]. Blink GC API reference. https://chromium.googlesource.
com/chromium/src/+/master/third_party/WebKit/Source/platform/heap/
BlinkGCAPIReference.md.

[14] Google. [n. d.]. Chrome. https://www.google.com/chrome/.
[15] Google. [n. d.]. Octane Benchmark. https://code.google.com/p/

octane-benchmark.
[16] Google. [n. d.]. SunSpider Benchmark. https://www.webkit.org/perf/sunspider/

sunspider.html.
[17] Abdul-Aziz Hariri, Brian Gorenc, and Simon Zuckerbraun. 2015. Abusing Silent

Mitigations: Understanding weaknesses within Internet Explorer’s Isolated Heap
and MemoryProtection. In Black Hat USA.

[18] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[19] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In USENIX ATC.

[20] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta pointers: Buffer overflow checks without the checks. In
EuroSys.

[21] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBounds: Memory Safety
for Shielded Execution. In EuroSys.

[22] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. 2014. Code-pointer Integrity. In OSDI.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO.

[24] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim, Long
Lu, and Wenke Lee. 2015. Preventing Use-after-free with Dangling Pointers
Nullification.. In NDSS.

[25] Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
kernel memory initialization to eliminate data leakages. In CCS.

[26] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger, Wenke Lee,
and Michael Backes. 2017. Unleashing use-before-initialization vulnerabilities in
the Linux kernel using targeted stack spraying. In NDSS.

[27] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. SafeInit: Compre-
hensive and Practical Mitigation of Uninitialized Read Vulnerabilities. In NDSS.

[28] Matt Miller. 2017. Uninitialized use by the containing memory region type (stack,
heap, other). http://pic.twitter.com/Buj5xJaPD0.

[29] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F Sweeney. 2009.
Producing wrong data without doing anything obviously wrong! ACM Sigplan
Notices 44, 3 (2009), 265–276.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: Compiler-enforced Temporal Safety for C. In ISMM.

[31] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe Retrofitting of Legacy Software. ACM Trans.
Program. Lang. Syst. 27, 3 (May 2005), 477–526. https://doi.org/10.1145/1065887.
1065892

[32] Gene Novark and Emery D Berger. 2010. DieHarder: Securing the Heap. In CCS.

[33] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano
Giuffrida. 2016. Poking Holes in Information Hiding. In USENIX Security.

[34] Oracle. [n. d.]. Java. https://www.java.com/.
[35] Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand,

Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano Giuffrida. 2017.
MARX: Uncovering class hierarchies in C++ programs. In Proceedings of the 24th
Annual Symposium on Network and Distributed System Security (NDSS’17).

[36] Jon Rafkind, AdamWick, John Regehr, and Matthew Flatt. 2009. Precise Garbage
Collection for C (ISMM).

[37] Pawel Sarbinowski, Vasileios P Kemerlis, Cristiano Giuffrida, and Elias Athana-
sopoulos. 2016. VTPin: practical VTable hijacking protection for binaries. In
ACSAC.

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX ATC.

[39] Jack Tang. 2014. Mitigating UAF Exploits with Delay Free for Inter-
net Explorer. http://blog.trendmicro.com/trendlabs-security-intelligence/
mitigating-uaf-exploits-with-delay-free-for-internet-explorer/.

[40] Microsoft Edge Team. 2015. Microsoft Edge: Building a safer
browser. https://blogs.windows.com/msedgedev/2015/05/11/
microsoft-edge-building-a-safer-browser/.

[41] TheMozilla Foundation. [n. d.]. Mozilla Firefox. https://www.mozilla.org/firefox.
[42] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:

Scalable Use-after-free Detection. In EuroSys.
[43] Wei Xu, Daniel C. DuVarney, and R. Sekar. 2004. An Efficient and Backwards-

compatible Transformation to Ensure Memory Safety of C Programs. SIGSOFT
Softw. Eng. Notes 29, 6 (Oct. 2004), 117–126. https://doi.org/10.1145/1041685.
1029913

[44] Suan Hsi Yong and Susan Horwitz. 2003. Protecting C Programs from Attacks via
Invalid Pointer Dereferences. In Proceedings of the 9th European Software Engi-
neering Conference Held Jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE-11). ACM, New York, NY, USA,
307–316. https://doi.org/10.1145/940071.940113

[45] Yves Younan. 2015. FreeSentry: Protecting against Use-after-free Vulnerabilities
due to Dangling Pointers. In NDSS.

https://www.golang.org
https://doi.org/10.1145/773473.178446
http://www.hboehm.info/gc/
http://www.hboehm.info/gc/
http://cve.mitre.org/
http://cve.mitre.org/
https://www.webkit.org/perf/sunspider/sunspider.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://chromium.googlesource.com/chromium/src/+/master/third_party/WebKit/Source/platform/heap/BlinkGCAPIReference.md
https://chromium.googlesource.com/chromium/src/+/master/third_party/WebKit/Source/platform/heap/BlinkGCAPIReference.md
https://chromium.googlesource.com/chromium/src/+/master/third_party/WebKit/Source/platform/heap/BlinkGCAPIReference.md
https://www.google.com/chrome/
https://code.google.com/p/octane-benchmark
https://code.google.com/p/octane-benchmark
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://pic.twitter.com/Buj5xJaPD0
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1065887.1065892
https://www.java.com/
http://blog.trendmicro.com/trendlabs-security-intelligence/mitigating-uaf-exploits-with-delay-free-for-internet-explorer/
http://blog.trendmicro.com/trendlabs-security-intelligence/mitigating-uaf-exploits-with-delay-free-for-internet-explorer/
https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-browser/
https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-browser/
https://www.mozilla.org/firefox
https://doi.org/10.1145/1041685.1029913
https://doi.org/10.1145/1041685.1029913
https://doi.org/10.1145/940071.940113

	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

