CoNSTANTINE: Automatic Side-Channel Resistance Using Efficient
Control and Data Flow Linearization

Daniele Cono D’Elia

Sapienza University of Rome
delia@diag.uniromal.it

Pietro Borrello
Sapienza University of Rome
borrello@diag.uniromal.it

ABSTRACT

In the era of microarchitectural side channels, vendors scramble to
deploy mitigations for transient execution attacks, but leave tradi-
tional side-channel attacks against sensitive software (e.g., crypto
programs) to be fixed by developers by means of constant-time
programming (i.e., absence of secret-dependent code/data patterns).
Unfortunately, writing constant-time code by hand is hard, as evi-
denced by the many flaws discovered in production side channel-
resistant code. Prior efforts to automatically transform programs
into constant-time equivalents offer limited security or compatibil-
ity guarantees, hindering their applicability to real-world software.

In this paper, we present CONSTANTINE, a compiler-based system
to automatically harden programs against microarchitectural side
channels. CONSTANTINE pursues a radical design point where secret-
dependent control and data flows are completely linearized (i.e., all
involved code/data accesses are always executed). This strategy pro-
vides strong security and compatibility guarantees by construction,
but its natural implementation leads to state explosion in real-world
programs. To address this challenge, CONSTANTINE relies on care-
fully designed optimizations such as just-in-time loop linearization
and aggressive function cloning for fully context-sensitive points-to
analysis, which not only address state explosion, but also lead to an
efficient and compatible solution. CONSTANTINE yields overheads as
low as 16% on standard benchmarks and can handle a fully-fledged
component from the production wolfSSL library.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; « Software and its engineering — Compilers.

KEYWORDS

Side channels; constant-time programming; compilers

ACM Reference Format:

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano
Giuffrida. 2021. CONSTANTINE: Automatic Side-Channel Resistance Using
Efficient Control and Data Flow Linearization. In Proceedings of ACM Con-
ference on Computer and Communications Security (CCS °21). ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS 21, November 14-19, Seoul, South Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Cristiano Giuffrida
Vrije Universiteit Amsterdam
giuffrida@cs.vu.nl

Leonardo Querzoni
Sapienza University of Rome
querzoni@diag.uniromal.it

1 INTRODUCTION

Protecting the confidentiality of security-sensitive information is
a key requirement of modern computer systems. Yet, despite ad-
vances in software security engineering, this requirement is more
and more challenging to satisfy in face of increasingly sophisti-
cated microarchitectural side-channel attacks. Such attacks allow
adversaries to leak information from victim execution by observ-
ing changes in the microarchitectural state (e.g., cache eviction),
typically via timing measurements (e.g., memory access latency).

Such attacks have been shown practical in the real world with
or without the assistance of CPU bugs. Examples in the former
category are transient execution attacks such as Spectre [38], Melt-
down [40], L1TF [68], and MDS [15, 56, 70]. Examples in the latter
category are traditional cache attacks (e.g., FLUSH+RELOAD ([79]
and PRIME+PROBE [51]) against security-sensitive software vic-
tims such as crypto libraries. While the former are the focus of many
mitigation efforts by vendors, for the latter the burden of mitigation
lies entirely on the shoulders of software developers [35].

In theory, this is feasible, as side-channel attacks leak secrets
(e.g., crypto keys) by observing victim secret-dependent computa-
tions (e.g., branch taken or array indexed based on a crypto key bit)
via microarchitectural measurements. Hence, eliminating explicit
secret-dependent code/data accesses from software—a practice gen-
erally known as constant-time programming [13]—is a viable avenue
for mitigation. In practice, removing side-channel vulnerabilities
from software is a daunting and error-prone task even for skilled de-
velopers. Not surprisingly, even production side channel-resistant
implementations are riddled with flaws [20, 61].

To address this problem, much prior work has proposed solutions
to automatically transform programs into their constant-time equiv-
alents or variations [27, 28,34, 36,41-43, 45, 49, 57, 63, 65,71, 73,75,
82-85]. Unfortunately, even the most recent solutions [52, 60, 78]
offer limited security or compatibility guarantees, hindering their
applicability to real-world programs.

In this paper, we introduce CONSTANTINE, a compiler-based sys-
tem for the automatic elimination of side-channel vulnerabilities
from programs. The key idea is to explore a radical design point
based on control and data flow linearization (or CFL and DFL), where
all the possible secret-dependent code/data memory accesses are al-
ways executed regardless of the particular secret value encountered.
The advantage of this strategy is to provide strong security and
compatibility guarantees by construction. The nontrivial challenge
is to develop this strategy in a practical way, since a straightforward
implementation would lead to program state explosion. For instance,
naively linearizing secret-dependent branches that guard loop exits
would lead to unbounded loop execution. Similarly, naively lin-
earizing secret-dependent data accesses by touching all the possible
memory locations would lead to an unscalable solution.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS ’21, November 14-19, Seoul, South Korea

Our design is indeed inspired by radical and impractical-by-
design obfuscation techniques such as the M/o/Vfuscator [3], which
linearizes the control flow to collapse the program’s control-flow
graph into a single branchless code block with only data movement
(i.e., x86 mov) instructions [37]. Each mov instruction uses an extra
level of indirection to operate on real or dummy data depending on
whether the code is running the intended side of a branch or not.

Revisiting such design point for side-channel protection faces
several challenges. First, linearizing all the branches with mov-only
code hinders efficient code generation in modern compilers and
leads to enormous overheads. To address this challenge, CONSTAN-
TINE only linearizes secret-dependent branches pinpointed by pro-
filing information, allows arbitrary branchless instructions besides
mov, and uses efficient indirect memory addressing to allow the
compiler to generate efficient code. Second, the M/o/Vfuscator only
linearizes the control flow and encodes branch decisions in new data
flows, a strategy which would only multiply the number of secret-
dependent data accesses. To address this challenge, CONSTANTINE
couples CFL with DFL to also linearize all the secret-dependent
data flows (generated by CFL or part of the original program).

Finally and above all, M/o/Vfuscator does not address state ex-
plosion. For example, it linearizes loop exits by means of invalid mov
instructions, which generate exceptions and restart the program in
dummy mode until the original loop code is reached. Other than
being inefficient, this strategy originates new side channels (e.g.,
exception handling) that leak the number of loop iterations. To
address state explosion, CONSTANTINE relies on carefully designed
optimizations such as just-in-time loop linearization and aggressive
function cloning. The former linearizes loops in the same way as
regular branches, but adaptively bounds the number of iterations
based on the original program behavior. The latter enables precise,
context-sensitive points-to analysis which can strictly bound the
number of possible targets at secret-dependent data accesses.

Collectively, our optimizations produce a scalable CFL and DFL
strategy, while supporting all the common programming constructs
in real-world software such as nested loops, indirect function calls,
pointer-based accesses, etc. Our design not only addresses the state
explosion problem, but also leads to a system that outperforms prior
comprehensive solutions in terms of both performance and com-
patibility, while also providing stronger security guarantees. For
example, we show CONSTANTINE yields overheads as low as 16%
for cache-line attacks on standard benchmarks. Moreover, to show
CONSTANTINE provides the first practical solution for automatic
side-channel resistance for real-world software, we present a case
study on the wolfSSL embedded TLS library. We show CONSTAN-
TINE-protected wolfSSL can complete a modular multiplication of a
ECDSA signature in 8 ms, which demonstrates CONSTANTINE’s au-
tomated approach can effectively handle a fully-fledged real-word
crypto library component for the very first time.

Contributions. To summarize, this paper proposes the following
contributions:

e We introduce CONSTANTINE, a system for the protection of
software from side channels.

e We show how CONSTANTINE can automatically analyze and
transform a target program by efficiently applying control
and data flow linearization techniques.

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

e We implement CONSTANTINE as a set of compiler transforma-
tions for the LLVM toolchain. CONSTANTINE is open source
(available at https://github.com/pietroborrello/constantine).

e We evaluate CONSTANTINE on several standard benchmarks,
evidencing its performance advantage against prior solutions.
We also present a case study on the wolfSSL library to show
its practical applicability on real-world software.

2 BACKGROUND

Microarchitectural side channels generally allow an adversary to
infer when and where in memory a victim program performs specific
code/data accesses. And by targeting secret-dependent accesses
originating from secret-dependent control and data flows in the
original program, an adversary can ultimately leak secret data.
Constant-time programming is a promising solution to eliminate
such explicit secret-dependent accesses from programs, but state-of-
the-art automated solutions are severely limited in terms of security,
performance, and/or compatibility.

Control Flow. Secret-dependent control flows (e.g., code branch-
ing on a crypto key bit) induce code accesses that microarchitectural
attacks can observe to leak secrets. Early constant-time program-
ming solutions only attempted to balance out secret-dependent
branches with dummy instructions (e.g., with cross-copying [6])
to mitigate only simple execution time side-channel attacks [44].
Molnar et al. [49] made a leap forward with the program counter
security model (PC-security), where the trace of secret-dependent
executed instructions is the same for any secret value.

Prior work has explored two main avenues to PC-security. The
first avenue is a form of transactional execution [52], which always
executes both sides of every secret-dependent branch—hence a real
and a decoy path—as-is, but uses a transaction-like mechanism to
buffer and later discard changes to the program state from decoy
paths. This approach provides limited security guarantees, as it
introduces new side channels to observe decoy path execution
and thus the secret. Indeed, one needs to at least mask exceptions
from rogue operands of read/write instructions on decoy paths,
introducing secret-dependent timing differences due to exception
handling. Even when normalizing such differences, decoy paths
may perform read/write accesses that real paths would not make,
introducing new decoy data flows. An attacker can easily learn
data-flow invariants on real paths (e.g., an array always accessed
at the same offset range) and detect decoy path execution when
the observed accesses reveal invariant violations. See Appendix A
for concrete decoy path side channel examples. Also, this approach
alone struggles with real-world software compatibility. For instance,
it requires loops to be completely unrolled, which leads to code size
explosion for nested loops and for those with large trip count.

Another avenue to PC-security is predicated execution [19], which
similarly executes both real and decoy paths, but only allows the
instructions from the real path to update the program state. Up-
dates are controlled by a predicate that reflects the original program
branch condition and take the form of a constant-time conditional
assignment instruction (e.g., cmov on x86) [19]. When on a decoy
path, read/write operations get rewired to a single (conditionally as-
signed) shadow address. However, such decoy (shadow) data flows
can again introduce new side channels to leak the decoy nature of a
path [18, 19]. Moreover, this form of predication hampers the opti-

https://github.com/pietroborrello/constantine

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

mization process of the compiler, forcing the use of pervasive cmov
instructions and constraining code transformation and generation.
Some more recent solutions attempt to generate more optimized
code by allowing some [60] or all [78] accesses on unmodified
addresses on decoy paths. However, this hybrid strategy mimics
transactional execution behavior and is similarly vulnerable to side-
channel attacks that detect data-flow invariant violations on decoy
paths. In addition, existing solutions face the same compatibility
issues of transactional solutions with real-world code.

Unlike prior solutions, CONSTANTINE’s control-flow linearization
(CFL) executes both real and decoy paths using an indirect memory
addressing scheme to transparently target a shadow address along
decoy paths. This strategy does not force the compiler to use cmov
instructions and yields more efficient generated code. For instance,
a CONSTANTINE-instrumented wolfSSL binary contains only 39%
of cmov instructions (automatically emitted by the code generator,
as appropriate) compared to predicated execution, resulting in a
net CFL speedup of 32.9%. As shown later, the addition of data-
flow linearization (DFL) allows CONSTANTINE to operate further
optimizations, eliminating shadow address accesses altogether as
well as the corresponding decoy data flows. CONSTANTINE is also
compatible with all the common features in real-world programs,
including variable-length loops bound by means of just-in-time
linearization and indirect calls handled in tandem with DFL.

Data Flow. Data-dependent side channels have two leading causes
on modern microarchitectures. Some originate from instructions
that exhibit data operand-dependent latencies, e.g., integer divi-
sion [19] and some floating-point instructions [10] on x86. Simple
mitigations suffice here, including software emulation [11] (also
adopted by CONSTANTINE), compensation code insertion [18], and
leveraging hardware features to control latencies [19].

The other more fundamental cause stems from secret-dependent
data flows (e.g., an array accessed at an offset based on a crypto key
bit), which induce data accesses that microarchitectural attacks can
observe to leak secrets. Hardware-based mitigations [74] do not
readily apply to code running on commodity processors. To cope
with such leaks, existing compiler-based solutions have explored
code transformations [78] and software-based ORAM [52].

SC-Eliminator [78] transforms code to preload cache lines of
security-sensitive lookup tables, so that subsequent lookup op-
erations can result in always-hit cache accesses, and no secret-
dependent time variance occurs. Unfortunately, since the preload-
ing and the secret-dependent accesses are not atomic, a non-passive
adversary may evict victim cache lines right after preloading and
later observe the secret-dependent accesses with a cache attack.
Cloak [32] adopts a similar mitigation approach, but enforces atom-
icity by means of Intel TSX transactions. Nonetheless, it requires
manual code annotations and can only support short-lived com-
putations. Moreover, these strategies are limited to standard cache
attacks and do not consider other microarchitectural attacks, in-
cluding those that operate at the subcacheline granularity [47, 80].

Raccoon [52] uses Path ORAM (Oblivious RAM) [63] as a short-
cut to protect data flows from attacks. ORAMs let code conceal its
data access patterns by reshuffling contents and accessing multiple
cells at each retrieval [30]. Unfortunately, this strategy introduces
substantial run-time overhead as each security-sensitive data access
results in numerous ORAM-induced memory accesses.

CCS ’21, November 14-19, Seoul, South Korea

Unlike prior solutions, CONSTANTINE’s data-flow linearization
(DFL) eliminates all the explicit secret-dependent data flows (gen-
erated by CFL or part of the original program) by forcing the corre-
sponding read/write operations to touch all their target memory
locations as computed by static points-to analysis. While such
analyses are known to largely overapproximate target sets on real-
world programs, CONSTANTINE relies on an aggressive function
cloning strategy to enable precise, context-sensitive points-to analy-
sis and strictly bound the number of possible targets. For instance, a
CoONSTANTINE-instrumented wolfSSL binary using state-of-the-art
points-to analysis [66] yields an average number of target objects
at secret-dependent data accesses of 6.29 and 1.08 before and after
aggressive cloning (respectively), a net reduction of 83% resulting
in precise and efficient DFL. Unlike prior solutions that are limited
to array accesses, CONSTANTINE is also compatible with arbitrary
pointer usage in real-world programs.

3 THREAT MODEL

We assume a strong adversary able to run arbitrary code on the tar-
get machine alongside the victim program, including on the same
physical or logical core. The adversary has access to the source/bi-
nary of the program and seeks to leak secret-dependent compu-
tations via microarchitectural side channels. Other classes of side
channels (e.g., power [39]), software (e.g., external libraries/OS [14])
or hardware (e.g., transient execution [16]) victims, and vulnera-
bilities (e.g., memory errors or other undefined behaviors [72]) are
beyond the scope of constant-time programming and subject of
orthogonal mitigations. We further make no restrictions on the mi-
croarchitectural side-channel attacks attempted by the adversary,
ranging from classic cache attacks [51, 79] to recent contention-
based attacks [8, 31]. With such attacks, we assume the adversary
can observe the timing of arbitrary victim code/data accesses and
their location at the cache line or even lower granularity.

4 CONSTANTINE

This section details the design and implementation of CONSTAN-
TINE. We first outline its high-level workflow and building blocks.

4.1 Overview

CONSTANTINE is a compiler-based system to automatically harden
programs against microarchitectural side channels. Our lineariza-
tion design pushes constant-time programming to the extreme and
embodies it in two flavors:

(1) Control Flow Linearization (CFL): we transform program
regions influenced by secret data to yield secret-invariant
instruction traces, with real and decoy parts controlled by a
dummy execution abstraction opaque to the attacker;

(2) Data Flow Linearization (DFL): we transform every secret-
dependent data access (including those performed by dummy
execution) into an oblivious operation that touches all the
locations such program point can possibly reference, leaving
the attacker unable to guess the intended target.

CFL and DFL add a level of indirection around value computations.
The CFL dummy execution abstraction uses it to implicitly nullify
the effects of instructions that presently execute as decoy paths.
DFL instead wraps load and store operations to induce memory

CCS ’21, November 14-19, Seoul, South Korea

accesses for the program that are secret-invariant, also ensuring
real and decoy paths access the same collections of objects.

Linearizing control and data flows represents a radical design
point with obvious scalability challenges. To address them, Con-
STANTINE relies on carefully designed optimizations. For control
flows, we rely on a M/o/Vfuscator-inspired indirect memory address-
ing scheme to legalize decoy paths while allowing the optimizer to
see through our construction and generate efficient code. We also
propose just-in-time loop linearization to efficiently support arbi-
trary loops in real-world programs and automatically bound their
execution based on the behavior of the original program (i.e., auto-
matically padding the number of iterations based on the maximum
value observed on real paths).

For data flows, we devise aggressive function cloning to substan-
tially boost the precision of static memory access analysis and min-
imize the extra accesses required by DFL. To further optimize DFL,
we rely on an efficient object metadata management scheme and on
hardware-optimized code sequences (e.g., AVX-512) to efficiently
touch all the necessary memory locations at each secret-dependent
data access. We also exploit synergies between control-flow and
data-flow handling to (i) eliminate the need for shadow accesses
on decoy paths (boosting performance and eradicating problematic
decoy data flows altogether); (ii) handle challenging indirect control
flows such as indirect function calls in real-world programs.

To automatically identify secret-dependent code and data ac-
cesses, we rely on profiling information obtained via dynamic infor-
mation flow tracking and propagate the dependencies along the call
graph. To analyze memory accesses, we consider a state-of-the-art
Andersen-style points-to analysis implementation [66] and show
how aggressive function cloning can greatly boost its precision
thanks to newly added full context sensitivity.

From a security perspective, CFL ensures PC-security for all the
instructions that operate on secret data or whose execution depends
on it; in the process it also replaces variable-latency instructions
with safe software implementations. DFL provides analogous guar-
antees for data: at each secret-dependent load or store operation,
the transformed program obliviously accesses every potentially
referenced location in the execution for that program point and is
no longer susceptible to microarchitectural leaks by design.

Figure 1 provides a high-level view of the CFL, DFL, and support
program analysis components behind CONSTANTINE. Our tech-
niques are general and we implement them as analyses and trans-
formation passes for the intermediate representation (IR) of LLVM.

4.2 Control Flow Linearization

With control flow linearization (CFL) we turn secret-dependent con-
trol flows into straight-line regions that meet PC-security require-
ments by construction [49], proposing just-in-time linearization
for looping sequences. We also make provisions for instructions
that may throw an exception because of rogue values along decoy
paths, or yield variable latencies because of operand values.

CFL: The sequence of secret-dependent instructions that the CPU
executes is constant for any initial input (PC-security) and data
values do not affect the latency of each such instruction.

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

With this invariant, only data access patterns can then influence

execution time, and DFL will make them insensitive to secret in-
put values. We assume that an oracle (the taint analysis of §4.4.1)
enucleates which control-flow transfer decisions depend on secret
data. Such information comprises if-else and loop constructs and
indirect-call targets. For each involved code region, we push the lin-
earization process in a recursive fashion to any nested control flows
(i.e., if-else branches, loops, and function calls), visiting control-flow
graphs (CFGs) and call graph edges in a post-order depth-first fash-
ion. By doing so we avoid leaks from decoy paths when executing
secret-independent inner branches in a protected region.
4.2.1 Dummy Execution. Each linearized region holds a “taken”
predicate instance that determines if the original program would
execute it (real path) or not (decoy path) under the current program
state. We incrementally update the predicate with a new instance
at every control-flow decision that guards the region in the original
program, and let the compiler use the previous incoming instance
upon leaving the region. The predicate backs a dummy execution
indirection abstraction where we let decoy paths execute together
with real paths, and use the taken predicate to prevent that visible
effects from decoy paths may pollute the program state.

The key to correctness is that we can safely allow decoy paths
to make local computations (i.e., assign to virtual registers in the
IR), as long as their values do not flow into memory. For memory
operations, each pointer expression computation selects an artificial
1 value when in dummy execution. DFL primitives wrap every load
and store instruction and make both real and decoy paths stride
the same objects thanks to points-to metadata associated with the
memory operation. Upon leaving a region, local values that the
program may use later (i.e. live virtual registers) undergo a selection
step to pick values from real paths at merge points.

The key to efficiency is using a selection primitive that is trans-
parent for the optimizer thanks to indirection. As we observed in
§2, the cmov selector typical of predicated execution constrains the
behavior of the optimizer during code generation. We leverage the
indirection on taken to design selection primitives based on arith-
metic and logic operations that can instead favor optimizations.

Let us consider the pointer assignment ptr = taken 7 p : L of
Figure 1. By modeling taken as an integer being 1 on real paths
and 0 on decoy ones, and by using NULL to represent L for DFL,
the selection becomes ptr = taken * p. DFL helpers will prevent
NULL accesses and deem them as from decoy paths: those can-
not happen on real paths since, like prior literature [52], we work
on error-free programs. This constant-time multiplication-based
scheme unleashes many arithmetic optimizations (e.g., global value
numbering [55], peephole [7]) at the IR and backend level, bring-
ing a net CFL speedup of 32.9% in wolfSSL over using the cmov
approach. Appendix B details other primitives that we evaluated.

Selection may be needed for (¢) compiler temporaries too, as
we will detail in §4.2.3. Unlike memory addresses, both incoming
values may be arbitrary, allowing for more limited optimization:
for them we use the select IR instruction and let LLVM lower it
branchlessly as it sees fit (including an x86 cmov).

Hereafter, we use ct_select to refer to a constant-time selection
of any values, but we inline the logic in the IR in the implementation.

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

allocation site AS1

CCS ’21, November 14-19, Seoul, South Korea

CODE GENERATION

secret data -
allocation site AS2

BRRg V = allocO

INFORMATION s =
FLOW TRACKING T
- RN
PONTSTO | ____._|
ANALYSIS

+H—Ceond)-

x = load(p)

sensitive regior
influenced by

taken 4 old_taken & cond |/’
ptr = taken ? p : 1L |

taken 4= old_taken

"

Leak-free
binary

\ \
LLVM

AS2: V = mallocC) |
lon L
AS1: global g

=

Control Flow
Linearization (CFL)

Data Flow
Linearization (DFL)

N

CODE ANALYSES NORMALIZED LLVM IR

IR-LEVEL CODE TRANSFORMATIONS

PROGRAM EXECUTION

Figure 1: Architecture of CONSTANTINE: code analyses, CFL & DFL transformations, and run-time object metadata.

4.2.2 Compiler IR Normalization. CONSTANTINE takes as input the
intermediate representation (IR) produced for the program by the
language-specific compiler frontend. We assume that the IR comes
in static single assignment (SSA) form [55] and that the CFG of
every function containing regions to transform is reducible. The
code can come in already-optimized form (e.g., -02, -03 settings).

We apply a number of normalization passes that simplify later
transformations with the ultimate goal of having single-entry, single-
exit regions as unit of transformation, similarly to [78].

We use existing LLVM passes to lower switch constructs into
if-else sequences, and to unify multiple function exit points into
a single one (for abort-like sequences that do not fall through, we
add artificial CFG edges to the exit node). As we work on error-free
programs, we replace exception-aware invoke statements with
normal calls. We also turn indirect calls into if-else sequences of
direct calls using points-to information (§4.4.2), guarding each direct
call with a pointer comparison on the target.

We then massage the CFG using standard compiler techniques [7]
so that it results into a graph composed only of single-entry, single-
exit regions: this will hold for all branches and loop constructs in
the IR. This normalized IR is the input for the taint oracle of §4.4.1.

4.2.3 Branch Linearization. We can now detail how branch lin-
earization operates and its orchestration with dummy execution.
Under the single-entry, single-exit structural assumption from IR
normalization, for a conditional construct of the likes if (cond) then
{A] else {B}, we note that its exit CFG node post-dominates both the
“then” and “else” regions of the branch, and is dominated by the
entry node by construction. In SSA form, ¢-nodes select incoming
path-sensitive values. To linearize a conditional construct we:
(1) remove the conditional branch, unlinking blocks A and B;
(2) replace in A every pointer expression computation with a
conditional assignment ct_select(cond, ptr, L);
(3) replace similarly in B, using the condition negated (!cond);
(4) wrap memory accesses with DFL ct_{load, store} primi-
tives, supplying the DFL metadata for the operation (§4.3);
(5) replace each ¢-node vy = ¢(v4,vp) in the exit block (which
assigns virtual register vy according to whether A or B exe-
cuted) with a conditional assignment ct_select(cond, v4, vB);
(6) merge (entry, A, B, exit) to form a single block, in this order.
We thus “sink” cond to conditionally assign pointers (L for decoy
paths) and virtual registers that outlive the region. Our transforma-
tion preserves the SSA form and can always be applied locally.
We can now add the dummy execution idea to the picture. With-
out loss of generality, let us consider two nested if-else statements
that possibly take part in a larger linearized region as in Figure 2.

top = <incoming 'taken' predicate>

t1 = Couter && to

ptri1 = ct_select(ty, &v[2], L)

if (couter) {

b1 = v[2] by = ct_load(ptryi, DFLp;)
} else { ti-else = !Couter && to
if (Cinner) { t2 = Cipner && ti_else
bo = v[e] ptro = ct_select(t2, &v[0], L)
} else { bs = ct_load(ptro, DFLbQ)
bz =0 to_else = !Cinner &% ti_else // unused
3 bg = 0
binner = ¢(b2,b3) binner = ct_select(cinner, b2, b3)

3 bg = ct_select(couter, b1, binner)
bs = ¢(b1,binner) ptrg = ct_select(tg, &v[1], 1)
v[1] = by ct_store(ptrs, b4, DFLstore;)

(a) Original code (b) After linearization

Figure 2: Linearization and dummy execution.

When reaching the outer if construct, the program sees a taken pred-
icate instance tq that determines whether the execution reached
the construct as part of a real (taken = true) or decoy computation.
Inside a region, IR instructions that assign virtual registers do not
need to know tg. Path-sensitive assignments of live-out values from
a region, such as binner, check the linearized conditions (Cipper in
this case). Memory-related instructions see instead their pointer
expressions conditionally assigned according to some t; taken in-
stance. Those instances are updated upon entering the enclosing
code block in the (original) program to reflect the combination of
control-flow conditions with the incoming taken predicate.

4.24 Loop Linearization. To cope with the practical requirements
of real-world code, with CONSTANTINE we explore a just-in-time
approach for the linearization of loops. Let us consider the follow-
ing secret-sensitive fragment, taken from a wolfSSL function that
computes x/R == x (mod N) using a Montgomery reduction:

_c = c + pa;
tmpm = a->dp;
for (x = 0; x < patl; x++)
*tmpm++ = *_c++;
for (; x < oldused; x++) // zero any excess digits on

*tmpm++ = @; // destination that we didn't write to

The induction variable x depends on secret data pa, outlives
the first loop, and dictates the trip count of the second loop. Prior
solutions struggle with each of these aspects, as well as with contin-
ue/break statements we found in wolfSSL. For the secret-dependent
trip count issue, some [78] try to infer a bound and pad the loop
with decoy iterations, then unroll the loop completely. However,
high trip counts seen at run time or inaccurate bound predictions
make unrolling immediately impractical due to code bloat.

In CONSTANTINE we design a new approach to handle loops that
avoids unrolling and supports full expressivity for the construct.

CCS ’21, November 14-19, Seoul, South Korea

base:
base: ipase = @
ipase = @ body :
body : icur = P(base: ipase, body: ipody)
icur = P(base: ipzge, ireal = ¢(base: undef, body: iogut)
body: ipody) ipody = icur*l
[...] iout= ct_select(taken, ipody, ireal)
ipody= icur*l [...]
[...] cond = ... // exit loop?
cond = ... // exit loop? cfl_cond = ... // CFL override
br cond, out, body br cfl_cond, out, body
out: out:
X = ipody x = iout

(a) Original code (b) After linearization

Figure 3: Linearization with local variables outliving loops.

The key idea is to flank the normal trip count of a loop with an own
CFL induction variable—dubbed c_idx next—and let such variable
dictate just-in-time how many times that loop should execute.

After IR normalization, a loop is a single-entry, single-exit region:
its exit block checks some condition cond for whether the program
should leave the loop or take the back-edge to the loop body. Note
that break/continue statements are just branches to the exit node
and we linearize them as in §4.2.3. Before entering the loop we
set ¢_idx := 0, and modify the exit block in such a way that the
program still makes the original cond computation, but uses instead
the current c_idx value to decide whether to leave the loop.

Say that we expect the program to execute the loop no more
than k times (we address loop profiling in §4.4.1). At every iteration
our exiting decision procedure increments c_idx by 1 and faces:

(1) taken= true A cond= false. The program is on a real path and
wishes to take the back-edge to the body: we allow it;

(2) taken= true A cond= true. The program is on a real path and
wishes to exit the loop: if c_idx = k we allow it, otherwise
we enter dummy mode (taken := false) and the program will
perform next k — c_idx dummy iterations for PC-security;

(3) taken = false. We make the program leave the loop when
c_idx = k, and take the back-edge otherwise.

Note that for (3) we do not use the value of cond, as it can go rogue
along decoy paths, but we still read it for the sake of linearization.
Additionally, during (1) we validate the prediction of the oracle:
whenever real program paths wish to iterate more than k times, we
adaptively update k allowing the loop to continue, and use the k’
seen on loop exit as the new bound when the program reaches the
loop again. The handling of this comparison is also linearized.

Nested loops or linearized branches in loop bodies pose no chal-
lenge: we incrementally update the taken predicate and restore it
across regions as we did for nested branches in §4.2.3 and Figure 2.

Let us resume the discussion of the code fragment. As variable x
outlives the first loop, we should prevent decoy paths from updating
it for the sake of correctness. If the compiler places x in memory,
the IR will manipulate it using load and store instructions, and the
dummy execution abstraction guarantees that only real paths can
modify it. If instead it uses a virtual register v for performance, we
flank it with another register v’ conditionally assigned according to
taken, and replace all the uses of v as operand in the remainder of
the CFG with v”. Figure 3 shows this transformation with ipogy and
iout: decoy paths keep modifying ipody for the sake of PC-security,
but do not pollute the program state. Thanks to this design, we do

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

not demote v to memory storage, which could harm performance
especially for tight loops, nor we constrain the optimizer.

4.2.5 Operand Sanitization. As last step, we safeguard computa-
tions that could cause termination leaks from rogue values along
decoy paths. In our design, this may happen only with divisions
instructions receiving zero as divisor value. In §2 we noted that x86
integer division is also subject to variable latencies from operand
values. We address both issues via software emulation, replacing
*div and *#rem LLVM instructions with subroutines that execute in
constant-time, and for xdiv are also insensitive to rogue values.

4.2.6 Code Generation. Our CFL design poses no restrictions on
code optimization as well as code generation operated in the back-
end. The optimizer can transform CFL-generated indirect memory
references by means of optimizations such as common subexpres-
sion elimination and the code generator can lower such references
using the most efficient patterns for the target architecture (includ-
ing cmov instructions on occasion). However, we need to prevent
the code generation process from inadvertently adding branches
in branchless IR-level code. Indeed, this is not uncommon [20, 49]:
luckily, modern compilers offer explicit support to preserve our
constant-time invariants. In more detail, we use LLVM backend
options (e.g., ~x86-cmov-converter=0 for branchless lowering on
x86) to control this behavior. As discussed later, we have also exper-
imentally validated CONSTANTINE-instrumented binaries preserve
our security invariants by means of a dedicated verifier.

4.3 Data Flow Linearization

With data flow linearization (DFL), we devise a new abstraction for
controlling the data access patterns influenced by secret data, so that
arbitrarily different (secret) inputs will lead to the same observable
program behavior for an attacker. As we discuss in our security
evaluation of §5, this design hardens against side-channel attacks
that prior solutions cannot handle and it does not suffer from leaks
through data-flow invariants and memory safety violations as we
saw for such solutions in §2. Furthermore, thanks to its combination
with points-to analysis, DFL is the first solution that does not place
restrictions on pointer and object types, supporting for instance
pointer-to-pointer casts that occur in real-world crypto code.

DEL: For every program point that performs a memory load or store
operation, DFL obliviously accesses all the locations that the original
program can possibly reference for any initial input.

To support this invariant we conduct a context-sensitive, field-
sensitive points-to analysis (described in §4.4.2) to build DFL meta-
data for each use of a pointer expression in a sensitive load or store
instruction. Such metadata describes the portions of the object(s)
that the expression may reference each time the program evalu-
ates it. We assume that only program-allocated memory can hold
secret-dependent data (external library calls cannot leak from §3).

For dynamic storage, that is stack- and heap-allocated objects,
we instrument the involved allocation sites in the program to keep
track at run time of the object instances currently stemming from
an allocation site of interest to DFL (rightmost part of Figure 1).

DFL uses indirection around incoming pointer values: it obliv-
iously accesses all the candidate object portions identified by the

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

typedef struct dfl_obj_list {
struct dfl_obj_list* next;
struct dfl_obj_list* prev;
struct dfl_obj_listxx head_ptr; // for fast removal from list
unsigned long magic; // to distinguish DFL heap objects
unsigned char datal[]; // contents of program object

} dfl_obj_list_t;

Figure 4: In-band metadata for data flow linearization.

points-to analysis, and retrieves or modifies the memory value only
within the object instance (if any) corresponding to the incoming
pointer value. We apply DFL to every memory load or store made
in a code region linearized by CFL (where the operation will see
an incoming L value when on a decoy path), and to memory op-
erations that are outside input-dependent control flows but still
secret-sensitive (e.g., array accesses with input-dependent index).

Unlike prior solutions, we do not need a shadow location for
decoy paths (accessing it would leak the nature of such paths, §2),
nor we let rogue pointers concur to memory accesses. Our design
makes data accesses oblivious to secret dependencies and to the
nature of control paths, and preserves memory safety in the process.

4.3.1 Load and Store Wrappers. For the linearization of the data
flow of accessed locations, we use ct_load and ct_store primi-
tives for DFL indirection and resort to different implementations
optimized for the storage type and the size of the object instances
to stride obliviously. As we discussed when presenting the CFL
stage, we accompany each use of a pointer expression in a load or
store with DFL metadata specific to the program point.

DFL metadata capture at compilation time the points-to infor-
mation for all the allocation sites of possibly referenced objects.
The analysis comprises stack allocations, objects in global memory,
and heap allocation operations. For each site, we use field-accurate
information to limit striding only to portions of an object, which
as a whole may hold thousands of bytes in real-world code.

Depending on the scenario, the user can choose the granular-
ity A at which memory accesses should become oblivious to an
adversary. One may only worry about cache attacks (A = 64) if,
say, only cross-core (cache) attacks are to be mitigated (e.g., with
cloud vendors preventing core co-location across security domains
by construction [5]). Or one may worry about arbitrary attacks if,
say, core colocation across security domains is possible and attack
vectors like MemJam (A = 4) are at reach of the attacker.

Our wrapper implementations stride an object portion with a
pointer expression incremented by A bytes every time and which
may match the incoming p input pointer from the program at most
once. Depending on the object portion size, DFL picks between stan-
dard AVX instructions for striding, AVX2/AVX512 gather-scatter
sequences to load many cache lines at once followed by custom
selection masks, and a cmov-based sequence that we devise to avoid
the AVX setup latency for small objects (details in Appendix C).

The DFL load and store wrappers inspect all the allocation sites
from the metadata. For global storage only a single object instance
exists; for stack and heap objects the instances may change during
the execution, and the wrappers inspect the run-time metadata that
the transformed program maintains (using doubly linked lists and
optimizations that we describe in the next sections).

For a load operation, DFL strides all the object instances that the
program point may reference and conditionally selects the value

CCS ’21, November 14-19, Seoul, South Korea

from the object portion matching the desired address. For decoy
paths, no match is found and ct_load returns a default value.

For a store operation, DFL breaks it into a load followed by a store.
The rationale is to write to every plausible program point’s target,
or the adversary may discover a secret-dependent write destination.
For every object portion identified by DFL store metadata, we read
the current value and replace it with the contents for the store only
when the location matches its target, otherwise we write the current
value back to memory. Decoy paths “refresh” the contents of each
object; real paths do the same for all but the one they modify.

4.3.2 Object Lifetime. DFL metadata supplied at memory oper-
ations identify objects based on their allocation site and charac-
teristics. While global storage is visible for the entire execution,
stack and heap locations have a variable lifetime, and we need to
maintain run-time metadata for their allocation sites.

We observe that real-world crypto code frequently allocates large
structures on the stack and pointers seen at memory operations
may reference more than one such structure. At the LLVM IR level,
stack-allocated variables take the form of alloca instructions that
return a pointer to one or more elements of the desired type. The
compiler automatically releases such storage on function return.

We interpose on alloca to wrap the object with in-band meta-
data information depicted in Figure 4. Essentially, we prepend the
originally allocated element with fields that optimize DFL opera-
tions and preserve stack alignment: the program element becomes
the last field of a variable-sized df1_obj_list_t structure. Then,
we assign the virtual register meant to contain the v pointer from
alloca with the address of v.data (32-byte offset on x64).

This transformation is simple when operating at the compiler
IR level: unlike binary rewriting scenarios [24], the compiler is free
to modify the stack layout while preserving program semantics,
including well-behaved pointer arithmetics. Upon alloca interpo-
sition, we make the program update the run-time allocation site
information and a symmetric operation happens on function exit.

Heap variables see a similar treatment. We interpose on allo-
cation operations to widen and prepend the desired object with
in-band metadata, with the address of v.data returned to the pro-
gram instead of the allocation base v. The v.magic field is pivotal
for handling free() operations efficiently: when interposing on
them, we may witness a df1_obj_list_t structure or a “standard”
object from other program parts. We needed an efficient means to
distinguish the two cases, as free() operations take the allocation
base as input: for DFL objects we have to subtract 32 from the
input pointer argument. We leverage the fact that allocators like
the standard libc allocator ptmalloc prepend objects with at least
one pointer-sized field. Hence accessing a heap pointer p as p — 8
is valid: for DFL objects it would be the address of the magic field
and we check its peculiar value to identify them.

4.3.3 Optimizations. One advantage of performing DFL at com-
piler IR level is that we can further optimize both the data layout
to ease metadata retrieval and the insertion of our DFL wrappers.

We identify functions that do not take part in recursive patterns
and promote to global variables their stack allocations that sen-
sitive accesses may reference. The promotion is sound as such a
function can see only one active stack frame instance at a time.
The promotion saves DFL the overhead of run-time bookkeeping,

CCS ’21, November 14-19, Seoul, South Korea

with faster metadata retrieval for memory operations as we discuss
next. To identify functions apt for promotion, we analyze the call
graph of the program (made only of direct calls after IR normaliza-
tion) to identify strongly connected components from recursion
patterns [81] and exclude functions taking part in them.

We also partially inline DFL handlers, as object allocation sites
are statically known from points-to analysis. For global storage, we
also hard-code the involved address and striding information. For
instance, a load operation from address ptrbecomes in pseudo-code:

res = 0

res |= dfl_glob_load(ptr, globl, stride_offset_g1, stride_size_g1)
res |= dfl_glob_load(ptr, glob2, stride_offset_g2, stride_size_g2)
res |= dfl_load(ptr, objs_as1, stride_offset_asl, stride_size_as2)
res |= dfl_load(ptr, objs_as2, stride_offset_as2, stride_size_as2)
res |= dfl_load(ptr, objs_as3, stride_offset_as2, stride_size_as2).

This is because the oracle determined that ptr may reference
(portions of) global storage glob1, glob2 or objects from allocation
sites as1, as2, as3, where objs_as; is the pointer to the data structure
(a doubly linked list of objects, as with AS2 in Figure 1) maintained
at run time for the allocation site (§4.3.2). With the OR operations
we perform value selection, as each df'1_helper returns 0 unless the
intended location ptris met during striding. In other words, instead
of maintaining points-to sets for memory operations as data, we
inline their contents for performance (saving on retrieval time) and
leave the LLVM optimizer free to perform further inlining of df1_
helpers code. The treatment of store operations is analogous.

Finally, we devise an effective (§7) striding optimization for loops.
We encountered several loops where the induction variable flows in
a pointer expression used to access an object, and from an analysis
of its value (based on LLVM’s scalar evolution) we could determine
an invariant: the loop would be touching all the portions that require
DFL striding and a distinct portion at each iteration. In other words,
the code is “naturally” striding the object: we can avoid adding DFL
striding and thus save on n(n — 1) unnecessary accesses.

4.4 Support Analyses

The compatibility of CONSTANTINE with real-world code stems also
from two “oracles” as we tailor robust implementations of main-
stream program analysis techniques to our context: an information
flow tracking technique to identify program portions affected by a
secret and a points-to analysis that we enhance with context sensi-
tivity to obtain points-to sets as accurate as possible.

4.4.1 ldentifying Sensitive Program Portions. Control and data flow
linearization need to be applied only to regions affected by secret
data, as protecting non-leaky code only hampers performance.

We assume the user has at their disposal a profiling suite to
exercise the alternative control and data flow paths of the crypto
functionality they seek to protect. Developers can resort to existing
test suites for libraries, actual workloads, or program testing tools
(e.g. generic [26] or specialized [33] fuzzers) to build one.

We then use DataFlowSanitizer (DFSan), a dynamic information
flow tracking solution for LLVM, to profile the normalized IR of
§4.2.2 over the profiling suite. DFSan comes with taint propaga-
tion rules for virtual registers and program memory and with APIs
to define taint source and sink points. We write taint source con-
figurations to automatically taint data that a program reads via
I/O functions (e.g., a key file) and use as sink points conditionals,

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

memory load/store operations, and div/rem instructions in the nor-
malized IR. In the DFSan-transformed IR we then encode rules in
the spirit of FlowTracker [54] to handle implicit flows among vir-
tual registers, leaving those possibly taking place through memory
to complementary tools like FTT [29].

We aggregate DFSan outputs to build a set of branches and
memory accesses that are secret-dependent, feeding it to CFL and
DFL. As we mentioned in §4.2, CFL will then push the hardening
process to nested flows, linearizing their control and data flows.
During the execution of the profiling suite we also profile loop trip
counts that we later use as initial predictions for CFL (§4.2.4).

4.4.2 Points-to Analysis. Points-to analyses [58] determine the
potential targets of pointers in a program. Nowadays they are
available off-the-shelf in many compilation systems, with inclusion-
based approaches in Andersen style [9] typically giving the most
accurate results. In CONSTANTINE, we extend the Andersen-style
analysis of the popular SVF library for LLVM [66]. For each pointer
usage in the program, we use this analysis to build the points-to
set of objects that it may reference at run time. Typically, points-
to analyses collapse object instances from a dynamic allocation
site into an abstract single object. Hence, points-to sets contain
information on object allocation sites and static storage locations.
Points-to analyses are sound. However, they may overapproxi-
mate sets by including objects that the program would never access
at run time. In a lively area of research, many solutions feature
inclusion-based analyses as the approach is more accurate than
the alternative, faster unification-based one [62]. Inclusion-based
analyses could give even more accurate results if they were to scale
to context sensitivity, i.e., they do not distinguish the uses of pointer
expressions (and thus potentially involved objects) from different
execution contexts. The context is typically intended as call-site
sensitivity, while for object-oriented managed languages other defi-
nitions exist [46, 59]. To optimize the performance of DFL, we need
as accurate points-to sets as possible, so in CONSTANTINE we try to
restore context sensitivity in an effective manner for a sufficiently
large codebase such as the one of a real-world crypto library.

Aggressive Cloning. We use function cloning to turn a context-
insensitive analysis in a context-sensitive one. A calling context [22]
can be modeled as an acyclic path on the call graph and one can cre-
ate a function clone for every distinct calling context encountered
during a graph walk. This approach can immediately spin out of
control, as the number of acyclic paths is often intractable [23, 77].

Our scenario however is special, as we may clone only the func-
tions identified as secret-dependent by the other oracle, along with
their callees, recursively. We thus explore aggressive cloning along
the maximal subtrees of the call graph having a sensitive function
as root. The rationale is that we need maximum precision along
the program regions that are secret-dependent, while we can settle
for context-insensitive results for the remainder of the program,
which normally dominates the codebase size.

Aggressive cloning turns out to be a key performance enabler,
making DFL practical and saving on important overheads. As we
discuss in §7, for wolfSSL we obtain points-to sets that are ~6x
smaller than the default ones of SVF and very close to the run-
time optimum. The price that we trade for such performance is an
increase in code size: this choice is common in much compiler re-

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

search, both in static [50] and dynamic [17] compilation settings, for
lucrative optimizations such as value and type-based specialization.

Refined Field Sensitivity. A field-sensitive analysis can distinguish
which portions of an object a pointer may reference. Real-world
crypto code uses many-field, nested data structures of hundreds
or thousands of bytes, and a load/store operation in the program
typically references only a limited portion from them. Field-accurate
information can make DFL striding cheaper: this factor motivated
our practical enhancements to the field-sensitive part of SVF.

The reference implementation fails to recover field-precise in-
formation for about nine-tenths of the wolfSSL accesses that un-
dergo DFL, especially when pointer arithmetics and optimizations
are involved. We delay the moment when SVF falls back to field-
insensitive abstract objects and try to reverse-engineer the structure
of the addressing so to fit it into static type declarations of portions
of the whole object. Our techniques are inspired by duck typing
from compiler research; we cover them in Appendix D. Thanks to
these refinements, we could recover field-sensitive information for
pointers for 90% of the sensitive accesses in our case study.

Indirect Calls. Points-to analysis also reveals possible targets
for indirect calls [66]. We use this information during IR normal-
ization when promoting them to if-series of guarded direct calls
(§4.2.2), so to remove leaks from variable targets. We refine the can-
didates found by SVF at call sites by matching function prototype
information and eliminating unfeasible targets. Indirect call target
information is also necessary for the aggressive cloning strategy.

4.5 Discussion

CONSTANTINE implements a compiler-based solution for eliminat-
ing microarchitectural side channels while coping with the needs of
real-word code. We chose LLVM for its popularity and the availabil-
ity of mature information-flow and points-to analyses. Nonetheless,
our transformations are general and could be applied to other com-
pilation toolchains. Similarly, we focus on x86/x64 architectures,
but multiplexing conditional-assignment and SIMD striding instruc-
tions exist for others as well (e.g. ARM SVE [64] , RISC-V “V” [4]).

Moreover, operating at the compiler IR level allows us to effi-
ciently add a level of indirection, with taken unleashing the opti-
mizer and with DFL making memory accesses oblivious to incoming
pointers. In addition, aggressive function cloning allows us to trans-
form the codebase and unveil a significantly more accurate number
of objects to stride. The IR also retains type information that we
can leverage to support field sensitivity and refine striding.

The just-in-time strategy to linearize secret-dependent unbounded
control flows (loops) allows us to dodge intractability with high
bounds and code bloat with tractable instances [60]. For points-to
set identification and indirect call promotion, our analyses yield
very accurate results (i.e., closely matching the run-time accesses)
on the programs we consider. We leave the exploration of a just-
in-time flavor for them to future work, which may be helpful in
non-cryptographic applications.

The main shortcoming of operating at the IR level is the inability
to handle inline assembly sequences found in some crypto libraries.
While snippets that break constant-time invariants are uncom-
mon, they still need special handling, for instance with annotations
or lifting. Verification-oriented lifting [53], in particular, seems a

CCS ’21, November 14-19, Seoul, South Korea

promising avenue as it can provide formally verified C equivalent
representations that we could use during IR normalization.

As the programs we study do not exercise them, for space lim-
itations we omit the treatment of recursion and multithreading.
Appendix E details the required implementation extensions.

5 SECURITY ANALYSIS

This section presents a security analysis of our transformations.
We start by arguing that instrumented programs are semantically
correct and induce secret-oblivious code and data access traces.
We then discuss how our design emerges unscathed by traditional
passive and active attacks and examine the residual attack surface.

Correctness and Obliviousness. Correctness follows directly from
our design, as all our transformations are semantics-preserving. In
short, for control flows, real paths perform all and only the com-
putations the original program would make. For data flows, values
from decoy paths cannot flow into real paths and correctness prop-
erties such as memory safety are preserved. Appendix F provides
informal proofs for these claims.

We now discuss how our linearization design yields oblivious
code and data access traces. For code accesses, PC-security follows
by CFL construction, as we removed conditional branches, loops
see a fixed number of iterations (we discuss wrong trip count pre-
dictions later), and IR normalization handles abort-like sequences.
For data accesses, we wrapped load and store operations with DFL
machinery that strides portions of every abstract (i.e., by alloca-
tion site) object that the operation may access, independently of the
incoming pointer value. For dynamic storage, for any two secrets,
the program will see identical object collections to maintain at run-
time: the composition of the lists can vary during the execution,
but identically so for both secrets. Finally, for virtual registers that
are spilled to memory by the backend, the CPU reads and writes
them with the same instructions regardless of the current taken
predicate value, so those accesses are also oblivious.

Security Properties. We build on the obliviousness claims above
to show that both passive attacks (attackers only monitoring mi-
croarchitectural events) and active attacks (attackers also arbitrarily
tampering with the microarchitectural state) are unsuccessful.

No instruction latency variance from secret-dependent operand
values is possible, since we replace and sanitize instructions such as
division (§4.2.5). Memory accesses may have variable latencies, but,
thanks to the DFL indirection, those will only depend on non-secret
code/data and external factors. Moreover, DFL wrappers do not leak
secrets and do not introduce decoy paths side channels in terms of
decoy data flows or exceptions. In §4.3.1, we explained how load
and store helpers stride objects using safe [19, 52] cmov or SIMD
instructions. As for decoy paths, taken can conditionally assign an
incoming pointer with L: the adversary would need access to CPU
registers or memory contents to leak the nature of a path (outside
the threat model). Finally, helpers are memory-safe as points-to
analysis is sound and we track object lifetimes.

Finally, an active attacker may perturb the execution to attempt
Flush+Reload, Prime+Probe, and other microarchitectural attacks to
observe cache line-sized or even word-sized victim accesses. With
vulnerable code, they could alter for instance the access timing for a
specific portion of memory, and observe timing differences to detect

CCS ’21, November 14-19, Seoul, South Korea

matching victim accesses. However, thanks to the obliviousness
property of our approach, leaking victim accesses will have no value
for the attacker, because we access all the possible secret-dependent
code/data locations every time.

Residual Attack Surface. We now discuss the residual attack sur-
face for CONSTANTINE. Design considerations aside, the correctness
and obliviousness of the final instrumented binary are also subject
to the correctness of our CONSTANTINE implementation. Any im-
plementation bug may introduce an attack surface. To mitigate this
concern, we have validated our correctness claims experimentally
by running extensive benchmarks and test suites for the programs
we considered in our evaluation. We have also validated our oblivi-
ousness claims experimentally by means of a verifier, as detailed
later. Overall, our implementation has a relatively small trusted
computing base (TCB) of around 11 KLOC (631 LOC for our profiler,
955 LOC for CFL, 2561 for DFL, and 7259 LOC for normalization
and optimization passes), which provides confidence it is possible
to attain correctness and obliviousness in practice.

CONSTANTINE’s residual attack surface is also subject to the
correctness of the required oracle information. The static points-to
analysis we build on [66] is sound by design and our refinements
preserve this property—barring again implementation bugs. Our
information-flow tracking profiler, on the other hand, relies on the
completeness of the original profiling suite to eliminate any attack
surface. While this is a fundamental limitation of dynamic analysis,
we found straightforward to obtain the required coverage for a
target secret-dependent computation, especially in cryptographic
software. Implementation bugs or limitations such as implicit flows
(§4.4.1) also apply here. A way to produce a more sound-by-design
oracle is to adopt static information-flow tracking, but this also
introduces overtainting and hence higher overheads [52].

An incomplete suite might also underestimate a secret-dependent
loop bound. Thanks to just-in-time linearization correctness is not
affected, but every time the trip count is mispredicted (i.e., real-path
loop execution yields a higher count than the oracle), the adversary
may observe a one-off perturbation (given that the instrumentation
quickly adapts the padding). This is insufficient to leak any kind
of high-entropy secret, but one can always envision pathological
cases. Similar considerations can be applied to recursive functions.

In principle, other than statically unbound secret-dependent
control flows, one can also envision statically unbound secret-
dependent data flows such as a secret-dependent heap-allocated
object size. We have not encountered such cases in practice, but they
can also be handled using just-in-time (data-flow) linearization—
i.e., padding to the maximum allocation size encountered thus far
during profiling/production runs with similar characteristics.

Part of the residual attack surface are all the code/data accesses
fundamentally incompatible with linearization and constant-time
programming in general. For instance, on the CFL front, one cannot
linearize imbalanced if-else constructs that invoke system calls, or
more generally secret-dependent code paths executing arbitrary li-
brary/system calls. Their execution must remain conditional. A way
to reduce the attack surface is to allow linearization of idempotent
library/system calls or even to include some external library/system
code in the instrumentation. On the DFL front, one cannot similarly
linearize secret-dependent data accesses with external side effects,
for instance those to a volatile data structure backed by a memory

10

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

mapped I/O region (e.g., a user-level ION region [69]). Again, we
have not encountered any of these pathological cases in practice.
Similarly, CONSTANTINE shares the general limitations of constant-

time programming on the compiler and microarchitectural opti-
mization front. Specifically, without specific provisions, a com-
piler backend may operate optimizations that inadvertently break
constant-time invariants at the source (classic constant-time pro-
gramming) or IR (automated solutions like CONSTANTINE) level.
Analogously, advanced microarchitectural optimizations may in-
advertently re-introduce leaky patterns that break constant-time
semantics. Some (e.g., hardware store elimination [25]) may origi-
nate new instructions with secret-dependent latencies and require
additional wrappers (and overhead). Others (e.g., speculative execu-
tion [38]) are more fundamental and require orthogonal mitigations.

6 PERFORMANCE EVALUATION

This section evaluates CONSTANTINE with classic benchmarks from
prior work to answer the following questions:

(1) What is the impact of our techniques on compilation time?

(2) How is binary size affected by linearization?

(3) What are the run-time overheads induced by CFL and DFL?

Methodology. We implemented CONSTANTINE on top of LLVM 9.0
and SVF 1.9 and tested it on a machine with an Intel i7-7800X CPU
(Skylake X) and 16 GB of RAM running Ubuntu 18.04. We discuss
two striding configurations to conceal memory access patterns with
DFL: word size (A = 4), reflecting (core colocation) scenarios where
recent intra cache level attacks like MemJam [47] are possible, and
cache line size (A = 64), reflecting the common (cache attack) threat
model of real-wold constant-time crypto implementations and also
CoNsTANTINE’s default configuration. We use AVX512 instructions
to stride over large objects. Complete experimental results when
using AVX2 and the A = 1 configuration (presently out of reach for
attackers) are further detailed in Appendix G. We study:

e 23 realistic crypto modules manually extracted by the au-
thors of SC-Eliminator [78] from a 19-KLOC codebase (SCE
suite), used also in the evaluation of Soares et al. [60];

e 6 microbenchmarks used in the evaluation of Raccoon [52]
(Raccoon suite)—all we could recover from the source code
of prior efforts [41, 42]—using the same input sizes;

e 8 targets used in constant-time verification works: 5 modules
of the pycrypto suite analyzed in [76] and 3 leaky functions
of BearSSL and OpenSSL studied in Binsec/Rel [20].

For profiling, we divide an input space of 32K elements in 128
equal partitions and pick a random instance from each, producing a
profiling input set of 256 inputs. We build both the baseline and the
instrumented version of each program at (-03). Table 1 presents
our full experimental datasets with the SCE suite (first five blocks)
and the Raccoon, pycrypto, and Binsec/Rel suites (one block each).

Validation. We validated the implementation for PC-security
and memory access obliviousness with two verifiers. For code ac-
cesses, we use hardware counters for their total number and a
cycle-accurate software simulation in GEM5. For data accesses, we
use cachegrind for cache line accesses and write a DBI [21] tool to
track what locations an instruction accesses, including predicated
cmov ones visible at the microarchitectural level. We repeatedly
tested the instrumented programs in our datasets with random

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

Table 1: Benchmark characteristics and overheads.

IR constructs (sensitive/total) performance | binary size
program branches [loops [reads writes [A=4] A=64[A=4] 1=64
aes 0/1 0/1 224/235 0/68 1.13x 1.08x| 1.16x 1.16x
des 0/1 0/1 318/362 0/36 1.19x 1.14x | 1.37x 1.73x

2 des3 0/3 0/3 861/1005 0/89 1.49x 1.36x|1.92x 2.84x
Z anubis 0/1 0/1 776/1240 | 0/87 1.29x 1.12x[1.27x| 1.27x
g cast5 0/1 0/1 333/372 0/36 1.13x 1.06x|1.16x| 1.16x
© | casto - - 192/204 0/4 1.13x 1.08x[1.01x| 1.01x
ferypt - - 64/74 0/18 1.04x 1.03x|1.01x| 1.01x
khazad - - 136/141 0/1 1.13x 1.09x|1.15x| 1.15x

3] aes_core - - 160/192 0/16 1.12x 1.06x|1.22x 1.22x
5 cast-ss] 0/1 0/1 333/355 0/54 1.23x 1.10x|1.24x| 1.24x
aes 0/12 0/6 452/525 0/153 |1.05x 1.03x[1.36x| 1.72x
cast128 0/2 0/2 333/374 0/52 1.02x 1.01x|1.16x| 1.16x

E des 0/1 0/1 136/185 0/24 1.01x 1.01x|1.16x| 1.16x
Q kasumi 0/7 0/7 96/174 0/18 1.01x 1.01x|1.29x| 1.57x
seed 0/6 0/6 320/360 0/41 1.02x 1.01x|1.18x| 1.18x
twofish 1/8 0/6 2402/2450 | 4/1084 |1.14x 1.12x|1.45x| 2.42x

31 3way 0/4 0/4 0/8 0/14 1.00x 1.00x[1.00x| 1.00x
& des 2/10 0/6 134/182 2/17 1.24x 1.09x| 1.23x 1.45x
] loki91 16/76 24/28 | 16/24 0/6 1.51x 1.43x|1.02x| 1.02x
& | camellia - - 32/48 0/48 [1.02x 1.01x| 1.01x| 1.01x
Z | des 0/2 0/2 144/195 0/12 1.06x 1.06x[1.29x| 1.85x
§ seed 0/4 0/1 200/265 0/18 1.18x 1.10x|1.22x| 1.22x
=] twofish - - 2574/2662 | 0/1080 |1.97x 1.92x|1.43x| 2.24x
binsearch 1/4 1/2 1/3 0/2 1.33x 1.18x|1.01x 1.01x

z | dijkstra 3/15 0/5 5/10 3/7 3.45x 1.51x|1.01x| 1.01x
8 findmax 0/2 0/2 0/1 0/1 1.00x 1.00x| 1.00x 1.00x
§ histogram 0/2 0/2 1/2 1/1 2.66x 1.68x|1.01x 1.01x
L matmul 0/5 0/5 0/2 0/2 1.00x 1.00x | 1.00x 1.00x
rsort 0/9 4/6 6/8 4/4 1.87x 1.84x|1.30x 1.30x

aes 0/11 0/5 96/223 0/59 1.13x 1.06x[1.19x| 1.19x

E arc4 0/3 0/3 3/30 2/10 1.07x 1.03x[1.01x| 1.01x
% | blowfish 0/16 0/12 | 24/77 0/39 5.07x 3.17x|1.01x| 1.01x
E cast 0/29 0/2 284/321 0/57 1.09x 1.04x|1.37x| 1.37x
des3 0/5 0/1 32/40 0/7 1.06x 1.04x|1.01x| 1.01x

| ts-rempad-luk13 | 4/17 1/1 6/14 4/17 1.01x 1.01x[1.02x| 1.02x
c\: aes_big 0/45 0/8 32/141 0/40 1.01x 1.01x| 1.29x 1.29x
| des_tab 0/50 0/28 | 8/164 0/97 1.04x 1.02x[1.29x| 1.29x
SCE suite - - 1.16x 1.11x|1.22x| 1.35x

avg | Raccoon suite - - 1.68x 1.33x| 1.05x| 1.05x
(cE0) pycrypto suite - - 1.48x 1.30x|1.10x| 1.10x
Binsec/Rel suite | - - 1.02x 1.01x| 1.19x| 1.19x

all programs - - 1.26x 1.16x|1.17x| 1.25x

variations of the profiling input set and random samples of the
remaining inputs. We found no visible variations.

Compilation Time. To measure CONSTANTINE-induced compi-
lation time, we applied our instrumentation to all the programs
in our datasets and report statistics in Table 1. The first four data
columns report the sensitive program points identified with taint-
based profiling over the randomly generated profiling input set.
For the SCE programs, we protect the key scheduling and encryp-
tion stages. For brevity, we report figures after cloning and after
secret-dependent pushing to nested flows (§4.2): the former affected
des3 and 1oki91, while the latter affected applied-crypto/des,
dijkstra, rsort, and tls-rempad-1uk13. Interestingly, for 3way,
the LLVM optimizer already transformed out a secret-sensitive
branch that would be visible at the source level, while no leaky data
flows are present in it (consistently with [78]).

Across all 37 programs, the average dynamic analysis time for
taint tracking and loop profiling was 4s, with a peak of 31.6s on
libgcrypt/twofish (~1 C KLOC). For static analysis (i.e., points-
to), CFL/DFL transformations, and binary generation, the end-to-
end average time per benchmark was 1.4s, with a peak of 23s on
botan/twofish (567 C++ LOC). Our results confirm CONSTAN-
TINE’s instrumentation yields realistic compilation times.

Binary Size. Next, we study how our instrumentation impacts
the final binary size. Two design factors are at play: cloning for the
sake of accurate points-to information and DFL metadata inlining
to avoid run-time lookups for static storage. Compared to prior
solutions, however, we save instructions by avoiding loop unrolling.

During code generation, we leave the choice of inlining AVX
striding sequences to the compiler, suggesting it for single accesses

11

CCS ’21, November 14-19, Seoul, South Korea

and for small stride sizes with the cmov-based method of Appen-
dix C—we observed lower run-time overhead from such choice.
When we use word-level striding (A = 4), the binary size is typi-
cally smaller than for cache line-level striding (A = 64), as the AVX
helpers for fast cache line accesses feature more complex logics.
As shown in Table 1, the average binary size increment on the
SCE suite is around 1.35x in our default configuration (A = 64) and
1.22x for A = 4. For des3, we observe 1.92-2.84x increases mainly
due to cloning combined with inlining. Smaller increases can be
noted for the two twofish variants, due to DFL helpers inlined
in the many sensitive read operations. The binary size increase
for all the other programs is below 2x. The Raccoon programs
see hardly noticeable differences with the exception of rsort, for
which we observe a 1.3x increase. We note similar peak values in
the two other suites, with a 1.37x increase for cast in pycrypto and
1.29x for aes_big and des_tab in Binsec/Rel. Our results confirm
CONSTANTINE’s instrumentation yields realistic binary sizes.

Run-time Performance. Finally, we study CONSTANTINE’S run-
time performance. To measure the slowdown induced by CONSTAN-
TINE on our benchmarks, we measured the time to run each instru-
mented program by means of CPU cycles with thread-accurate CPU
hardware counters (akin [78]). We repeated the experiments 1,000
times and report the mean normalized execution time compared
against the baseline. Table 1 presents our results.

CoNSTANTINE’s default configuration produces realistic over-
heads across all our benchmarks, for instance with a geomean
overhead of 11% on the SCE suite and 33% on the Raccoon pro-
grams. These numbers only increase to 16% and 68% for word-level
protection. Our SCE suite numbers are comparable to those of SC-
Eliminator [78] and Soares et al. [60] (which we confirmed using the
artifacts publicly released with both papers, Appendix G), despite
CoNsTANTINE offering much stronger compatibility (i.e., real-world
program support) and security (i.e., generic data-flow protection
and no decoy path side channels) guarantees. On the Raccoon test
suite, on the other hand, Raccoon reported two orders-of-magnitude
slowdowns (up to 432x) on a number of benchmarks, while Con-
STANTINE’s worst-case slowdown in its default configuration is only
1.84x, despite CONSTANTINE again providing stronger compatibility
and security guarantees (i.e., no decoy path side channels). Overall,
CONSTANTINE significantly outperforms state-of-the-art solutions
in the performance/security dimension on their own datasets, while
providing much better compatibility with real-world programs. For
the two other suites, we observe modest overheads with the ex-
ception of blowfish: its 3.17-5.07x slowdown originates in a hot
tight loop making four secret-dependent accesses on four very large
tables, a pathological case of leaky design for automatic repair.

7 CASE STUDY

The wolfSSL library is a portable SSL/TLS implementation written
in C and compliant with the FIPS 140-2 criteria from the U.S. gov-
ernment. It makes for a compelling case study for several reasons.

From a technical perspective, it is representative of the common
programming idioms in real-world programs and is a complex,
stress test for any constant-time programming solution (which, in
fact, none of the existing solutions can even partially support). As a
by-product, it also allows us to showcase the benefits of our design.

CCS ’21, November 14-19, Seoul, South Korea

Table 2: Characteristics and overheads for wolfSSL.

baseline w/o cloning w/ cloning
functions 84 84 864
binary size (KB) 39 135 (3.5x) 638 (16.35x)
exec cycles (M) 2.6 200 (77x) 33 (12.7x)
accessed objs/point | 1 6.29 1.08
tainted e Sl P
branches | 13 39 1046 (118)
loops 12 31 863 (139)
reads 33 138 2898 (52)
writes 1 91 1892 (2)
time (ms) cycles () binary size (kB)
WOIfSSL (W=4) 0.35 16 39
wolfSSL (W=1) 0.57 2.6 39
wolfSSL (const. time) | 0.7 2.9 47
CONSTANTINE (W=1) | 8 33 638

The library supports Elliptic Curve (EC) cryptography, which
is appealing as it allows smaller keys for equivalent guarantees of
non-EC designs (e.g. RSA) [67]. EC Digital Signature Algorithms
(ECDSA) are among the most popular DSA schemes today, yet their
implementations face pitfalls and vulnerabilities that threaten their
security, as shown by recent attacks such as LadderLeak [12] (tar-
geting the Montgomery ladder behind the EC scalar multiplication
in ECDSA) and CopyCat [48] (targeting the vulnerable hand-crafted
constant-time (CT) wolfSSL ECDSA code).

In this section, we harden with CONSTANTINE the mulmod modu-
lar multiplication procedure in ECDSA from the non-CT wolfSSL
implementation. This procedure calculates a curve point k X G,
where k is a crypto-secure nonce and G is the EC base point. Leaks
involving k bits have historically been abused in the wild for, e.g.,
stealing Bitcoin wallets [2] and hacking consoles [1].

Code Features and Analysis. The region to protect comprises 84
functions from the maximal tree that mulmod spans in the call graph.
We generate a profiling set of 1024 random inputs with 256-bit key
length and identify sensitive branches, loops, and memory accesses
(Table 2). The analysis of loops is a good example of how unrolling is
unpractical. We found an outer loop iterating over the key bits, then
1 inner loop at depth 1, 4 at depth 2, and 3 at depth 3 (all within the
same outer loop). Every inner loop iterates up to 4 times, resulting
in a nested structure—and potential unroll factor—of 61,440. And
this calulation is entirely based on profiling information, the inner
loops are actually unbounded from static analysis.

Similarly, cloning is crucial for the accuracy of DFL. We profiled
the object sets accessed at each program point with our DBI tool
(§6). With cloning, on average, a protected access over-strides (i.e.,
striding bytes that the original program would not touch) by as
little as 8% of the intended storage. Without cloning, on the other
hand, points-to sets are imprecise enough that DFL needs to make
as many as 6.29x more accesses than strictly needed.

Overheads. Table 2 presents our run-time performance overhead
results, measured and reported in the same way as our earlier
benchmark experiments. As shown in the table, the slowdown
compared to the original non-CT baseline of wolfSSL (using the
compilation parameter W=1) is 12.7x, which allows the CONSTAN-
TINE-instrumented version to complete a full run in 8 ms. The
compilation parameter W allows the non-CT version to use differ-
ent double-and-add interleavings over the key bits as part of its
sliding window-based double-and-add approach to implement ECC
multiplication. In brief, a higher W value trades run-time storage
(growing exponentially with W) with steady-state throughput (in-
creasing linearly with W), but also alters the code generated, due to

12

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

snowball optimization from inlined constants. This choice turns out
to be cost-effective in the non-CT world, but not for linearization.

For completeness, we also show results for the best configuration
of the non-CT version (which we profiled to be W=4) and the hand-
written CT version of wolfSSL. The non-CT code completes an ECC
multiplication in 0.35 ms in its best-performing scenario, while the
hand-written CT version completes in 0.7 ms. Our automatically
hardened code completes in 8ms, that is within a 11.42x factor of
the hand-written CT version, using 11.38x more CPU cycles, yet
with strong security guarantees for both control and data flows
from the articulate computation (i.e., 84 functions) involved.

In terms of binary size increase, with cloning we trade space
usage for DFL performance. We obtain a 16.36x increase compared
to the reference non-CT implementation, and 13.57x higher size
than the CT version. The performance benefits from cloning are
obvious (77x/12.7x=6.06x end-to-end speedup) and the size of the
binary we produce is 638 KB, which, in absolute terms is accept-
able, but amenable to further reduction. In particular, the nature of
wolfSSL code is tortured from a cloning perspective: it comprises
36 arithmetic helper functions that we clone at multiple usage sites.
We measured, however, that in several cases they are invoked in
function instances (which now represents distinct calling contexts
for the original program) that see the same points-to information.
Hence, after cloning, one may attempt merging back functions from
calling contexts that see the same points-to set, saving a relevant
fraction of code boat without hampering DFL performance.

Other optimizations, such as our DFL loop optimization also
yields important benefits, removing unnecessary striding in some
loops—without it, the slowdown would more than double (27.1x).
We conclude by reporting a few statistics on analysis and compila-
tion time. The profiling stage took 10m34s, the points-to analysis
20s (~2s w/o cloning), and the end-to-end code transformation and
compilation process 1m51s (31s for the non-CT reference).

Overall, our results confirm that CONSTANTINE can effectively
handle a real-world crypto library for the first time, with no anno-
tations to aid compatibility and with realistic compilation times,
binary sizes, and run-time overheads. CONSTANTINE’s end-to-end
run-time overhead, in particular, is significantly (i.e., up to two or-
ders of magnitude) lower than what prior comprehensive solutions
like Raccoon [52] have reported on much simpler benchmarks.

8 CONCLUSION

We have presented CONSTANTINE, an automatic constant-time sys-
tem to harden programs against microarchitectural side channels.
Thanks to carefully designed compiler transformations and opti-
mizations, we devised a radical design point—complete linearization
of control and data flows—as an efficient and compatible solution
that brings security by construction, and can handle for the very
first time a production-ready crypto library component.

ACKNOWLEDGEMENTS

We thank our shepherd Qi Li and the anonymous reviewers for
their valuable feedback. This work was supported by the European
Union’s Horizon 2020 research and innovation programme under
grant agreements No. 786669 (ReAct) and 825377 (UNICORE), and
by Intel Corporation through the Side Channel Vulnerability ISRA.

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

REFERENCES

(1]
(2]
(3]
(4]
(5]

[9

=

[10]

(11

[12]

[13

[15]

[16

[17

(18]

[19

[20]

[
=

2010. Console Hacking 2010. (Dec. 2010). https://fahrplan.events.ccc.de/congress/
2010/Fahrplan/events/4087.en.html

2013. Bitcoin - Android Security Vulnerability. (Aug. 2013). https://bitcoin.org/
en/alert/2013-08-11-android
2015. The M/o/Vfuscator.
movfuscator

2019. RISC-V "V" Vector Extension. (Nov. 2019).
documents/riscv-v-spec/riscv-v-spec.pdf

2020. Google Publishes Latest Linux Core Scheduling Patches So Only Trusted
Tasks Share A Core. (Nov. 2020). https://www.phoronix.com/scan.php?page=
news_item&px=Google-Core-Scheduling-v9#:~:text=Google%20engineer%
20Joel%20Fernandes%20sent,against%20the%20possible%20security %20exploits
Johan Agat. 2000. Transforming out Timing Leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Boston,
MA, USA) (POPL °00). Association for Computing Machinery, New York, NY,
USA, 40-53. https://doi.org/10.1145/325694.325702

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA.

A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and N. Tuveri. 2019.
Port Contention for Fun and Profit. In 2019 IEEE Symposium on Security and
Privacy (SP). 870-887. https://doi.org/10.1109/SP.2019.00066

Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Program-
ming Language. Ph.D. Dissertation.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.
In Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP '15). IEEE
Computer Society, USA, 623-639. https://doi.org/10.1109/SP.2015.44

Marc Andrysco, Andres N6tzli, Fraser Brown, Ranjit Jhala, and Deian Stefan.
2018. Towards Verified, Constant-Time Floating Point Operations. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security
(Toronto, Canada) (CCS ’18). Association for Computing Machinery, New York,
NY, USA, 1369-1382. https://doi.org/10.1145/3243734.3243766

Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. 2020. LadderLeak: Breaking ECDSA with Less than One Bit of
Nonce Leakage. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS "20). Association for Computing Machinery,
New York, NY, USA, 225-242. https://doi.org/10.1145/3372297.3417268

G. Barthe, B. Grégoire, and V. Laporte. 2018. Secure Compilation of Side-Channel
Countermeasures: The Case of Cryptographic "Constant-Time”. In 2018 IEEE 31st
Computer Security Foundations Symposium (CSF). 328-343. https://doi.org/10.
1109/CSF.2018.00031

Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2016. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector. In 2016
IEEE Symposium on Security and Privacy (SP). 987-1004. https://doi.org/10.1109/
SP.2016.63

Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-Resistant
CPUs. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’19). Association for Computing Machinery, New York,
NY, USA, 769-784. https://doi.org/10.1145/3319535.3363219

Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for
the New Spectre Era. In Proc. of the 41st ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI 2020). Association for Computing Ma-
chinery, New York, NY, USA, 913-926. https://doi.org/lO.l145/3385412.3385970
Maxime Chevalier-Boisvert, Laurie Hendren, and Clark Verbrugge. 2010. Op-
timizing Matlab through Just-In-Time Specialization. In Compiler Construction,
Rajiv Gupta (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 46-65.

Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. 2012. Compiler Mitiga-
tions for Time Attacks on Modern X86 Processors. ACM Trans. Archit. Code Optim.
8, 4, Article 23 (Jan. 2012), 20 pages. https://doi.org/10.1145/2086696.2086702
Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. 2009.
Practical Mitigations for Timing-Based Side-Channel Attacks on Modern X86
Processors. In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy
(SP "09). IEEE Computer Society, USA, 45-60. https://doi.org/10.1109/SP.2009.19
Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: Efficient
Relational Symbolic Execution for Constant-Time at Binary-Level. In Proceedings
of the 2020 IEEE Symposium on Security and Privacy (SP "20). IEEE Computer
Society.

Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro, and
Lorenzo Cavallaro. 2019. SoK: Using Dynamic Binary Instrumentation for Se-
curity (And How You May Get Caught Red Handed). In Proc. of the 2019 ACM
Asia Conference on Computer and Communications Security (Asia CCS °19). ACM,
15-27. https://doi.org/10.1145/3321705.3329819

(Oct. 2015). https://github.com/xoreaxeaxeax/

https://riscv.github.io/

13

[22

[23

[24

™~
2

[26

[27

[28

™
20,

[30

(31

[32

[35

[36

[37

(38]

[39

[40

[41

CCS ’21, November 14-19, Seoul, South Korea

Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2011. Mining Hot
Calling Contexts in Small Space. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (San Jose, California,
USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA,
516-527. https://doi.org/10.1145/1993498.1993559

Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi. 2016. Mining Hot
Calling Contexts in Small Space. Software: Practice and Experience 46, 8 (2016),
1131-1152. https://doi.org/10.1002/spe.2348

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitization.
(2020).

Travis Downs. 2020. Hardware Store Elimination. https://travisdowns.github.io/
blog/2020/05/13/intel-zero-opt.html.

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. 2012. A Secure
Processor Architecture for Encrypted Computation on Untrusted Programs. In
Proceedings of the Seventh ACM Workshop on Scalable Trusted Computing (Raleigh,
North Carolina, USA) (STC ’12). Association for Computing Machinery, New
York, NY, USA, 3-8. https://doi.org/10.1145/2382536.2382540

Christopher W Fletchery, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan,
and Srinivas Devadas. 2014. Suppressing the oblivious ram timing channel while
making information leakage and program efficiency trade-offs. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 213-224.

Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association, 2577—
2594. https://www.usenix.org/conference/usenixsecurity20/presentation/gan
Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM 43, 3 (May 1996), 431?473. https://doi.org/10.1145/
233551.233553

Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures. https://doi.org/10.14722/ndss.2020.23018

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection Using
Hardware Transactional Memory. In Proceedings of the 26th USENIX Conference
on Security Symposium (SEC’17). USENIX Association, USA, 217-233.

S.He, M. Emmi, and G. Ciocarlie. 2020. ct-fuzz: Fuzzing for Timing Leaks. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST). 466-471. https://doi.org/10.1109/ICST46399.2020.00063

Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath,
and Mohit Tiwari. 2015. Understanding contention-based channels and using
them for defense. In 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 639-650.

Intel. 2020. Guidelines for Mitigating Timing Side Channels Against Cryp-
tographic Implementations. Developer Zone - Secure Coding (2020). https:
//software.intel.com/security-software-guidance/secure-coding/guidelines-
mitigating-timing- side-channels-against- cryptographic-implementations
Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. {STEALTHMEM }:
System-level protection against cache-based side channel attacks in the cloud. In
Presented as part of the 21st {USENIX} Security Symposium ({USENIX} Security
12). 189-204.

Julian Kirsch, Clemens Jonischkeit, Thomas Kittel, Apostolis Zarras, and Claudia
Eckert. 2017. Combating Control Flow Linearization. In ICT Systems Security and
Privacy Protection, Sabrina De Capitani di Vimercati and Fabio Martinelli (Eds.).
Springer International Publishing, Cham, 385-398.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security and Privacy
(SP). 1-19. https://doi.org/10.1109/SP.2019.00002

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In IEEE S&P.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 973-990.

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace Oblivious
Computation. In Proceedings of the Twentieth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Istanbul,
Turkey) (ASPLOS ’15). Association for Computing Machinery, New York, NY,
USA, 87-101. https://doi.org/10.1145/2694344.2694385

https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://fahrplan.events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://bitcoin.org/en/alert/2013-08-11-android
https://bitcoin.org/en/alert/2013-08-11-android
https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://riscv.github.io/documents/riscv-v-spec/riscv-v-spec.pdf
https://riscv.github.io/documents/riscv-v-spec/riscv-v-spec.pdf
https://www.phoronix.com/scan.php?page=news_item&px=Google-Core-Scheduling-v9#:~:text=Google%20engineer%20Joel%20Fernandes%20sent,against%20the%20possible%20security%20exploits
https://www.phoronix.com/scan.php?page=news_item&px=Google-Core-Scheduling-v9#:~:text=Google%20engineer%20Joel%20Fernandes%20sent,against%20the%20possible%20security%20exploits
https://www.phoronix.com/scan.php?page=news_item&px=Google-Core-Scheduling-v9#:~:text=Google%20engineer%20Joel%20Fernandes%20sent,against%20the%20possible%20security%20exploits
https://doi.org/10.1145/325694.325702
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1109/SP.2015.44
https://doi.org/10.1145/3243734.3243766
https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/CSF.2018.00031
https://doi.org/10.1109/SP.2016.63
https://doi.org/10.1109/SP.2016.63
https://doi.org/10.1145/3319535.3363219
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/2086696.2086702
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1145/3321705.3329819
https://doi.org/10.1145/1993498.1993559
https://doi.org/10.1002/spe.2348
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://doi.org/10.1145/2382536.2382540
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/233551.233553
https://doi.org/10.14722/ndss.2020.23018
https://doi.org/10.1109/ICST46399.2020.00063
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://software.intel.com/security-software-guidance/secure-coding/guidelines-mitigating-timing-side-channels-against-cryptographic-implementations
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/2694344.2694385

CCS ’21, November 14-19, Seoul, South Korea

[42]

[43

[44]

[45

[46]

[47

[48]

[49]

[50]

[51

[52

[53

[54

[55]

[56

o
=

[58

[59]

Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory Trace Oblivious Program
Execution. In Proceedings of the 2013 IEEE 26th Computer Security Foundations
Symposium (CSF °13). IEEE Computer Society, USA, 51-65. https://doi.org/10.
1109/CSF.2013.11

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. PHANTOM: Practical Oblivious Compu-
tation in a Secure Processor. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 311-324. https://doi.org/10.1145/2508859.2516692
Heiko Mantel and Artem Starostin. 2015. Transforming Out Timing Leaks, More
or Less. In Proceedings, Part I, of the 20th European Symposium on Computer
Security — ESORICS 2015 - Volume 9326. Springer-Verlag, Berlin, Heidelberg, 447—
467. https://doi.org/10.1007/978-3-319-24174-6_23

Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 118-129.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized
Object Sensitivity for Points-to and Side-Effect Analyses for Java (ISSTA ’02).
Association for Computing Machinery, New York, NY, USA, 1-11. https://doi.
org/10.1145/566172.566174

Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.
MemJam: A False Dependency Attack Against Constant-Time Crypto Implemen-
tations. Int. J. Parallel Program. 47, 4 (Aug. 2019), 538?570. https://doi.org/10.
1007/s10766-018-0611-9

Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
2020. CopyCat: Controlled Instruction-Level Attacks on Enclaves. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 469-486. https://
www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The
Program Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. In Proceedings of the 8th International Conference on
Information Security and Cryptology (Seoul, Korea) (ICISC’05). Springer-Verlag,
Berlin, Heidelberg, 156-168. https://doi.org/10.1007/11734727_14

Robert Muth, Scott Watterson, and Saumya Debray. 2000. Code Specialization
Based on Value Profiles. In Static Analysis, Jens Palsberg (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 340-359.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology (San Jose, CA) (CT-RSA’06).
Springer-Verlag, Berlin, Heidelberg, 1-20. https://doi.org/10.1007/11605805_1
Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-Channels through Obfuscated Execution. In Proceedings of the 24th USENIX
Conference on Security Symposium (Washington, D.C.) (SEC’15). USENIX Associa-
tion, USA, 431-446.

Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, and
Marie-Laure Potet. 2019. Get Rid of Inline Assembly through Verification-
Oriented Lifting. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (San Diego, California) (ASE ’19). IEEE Press,
577-589. https://doi.org/10.1109/ASE.2019.00060

Bruno Rodrigues, Fernando Magno Quintao Pereira, and Diego F. Aranha. 2016.
Sparse Representation of Implicit Flows with Applications to Side-Channel Detec-
tion. In Proceedings of the 25th International Conference on Compiler Construction
(Barcelona, Spain) (CC 2016). Association for Computing Machinery, New York,
NY, USA, 110-120. https://doi.org/10.1145/2892208.2892230

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 12-27.
https://doi.org/10.1145/73560.73562

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security (London, United Kingdom) (CCS
’19). Association for Computing Machinery, New York, NY, USA, 753-768.
https://doi.org/10.1145/3319535.3354252

Elaine Shi, T. H. Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O((logN)3) Worst-Case Cost. In In: Lee D.H., Wang X. (eds) Advances
in Cryptology — ASIACRYPT 2011. Lecture Notes in Computer Science, vol 7073.
Springer Berlin Heidelberg, 197-214. https://doi.org/10.1007/978-3-642-25385-
0_11

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found. and
Trends in Prog. Lang. 2, 1 (2015), 1-69. https://doi.org/10.1561/2500000014
Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. 2011. Pick Your
Contexts Well: Understanding Object-Sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for Computing Machinery, New
York, NY, USA, 17-30. https://doi.org/10.1145/1926385.1926390

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

[60] Luigi Soares and Fernando Magno Quintao Pereira. 2021. Memory-Safe Elim-

ination of Side Channels. In (to appear) In Proceedings of the 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO 2021).

[61] Juraj Somorovsky. 2016. Systematic Fuzzing and Testing of TLS Libraries. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1492-1504. https://doi.org/10.1145/2976749.2978411

Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (St. Petersburg Beach, Florida, USA) (POPL *96). Association for Com-
puting Machinery, New York, NY, USA, 32-41. https://doi.org/10.1145/237721.
237727

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (CCS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 299-310. https://doi.org/10.1145/2508859.2516660
N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017.
The ARM Scalable Vector Extension. IEEE Micro 37, 2 (2017), 26-39. https:
//doi.org/10.1109/MM.2017.35

G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. 2003. AEGIS: architecture for tamper-evident and tamper-resistant
processing. In ACM International Conference on Supercomputing 25th Anniversary
Volume. 357-368.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC 2016). Association for Computing Machinery,
New York, NY, USA, 265-266. https://doi.org/10.1145/2892208.2892235

U.S. National Security Agency. 2016. Commercial National Security Algorithm
Suite and Quantum Computing FAQ. (Jan. 2016).

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
out-of-Order Execution. In Proceedings of the 27th USENIX Conference on Security
Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association, USA, 991-1008.
Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
2016. Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New
York, NY, USA, 1675-1689. https://doi.org/10.1145/2976749.2978406

S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze, K. Razavi, H. Bos,
and C. Giuffrida. 2019. RIDL: Rogue In-Flight Data Load. In 2019 IEEE Symposium
on Security and Privacy (SP). 88-105. https://doi.org/10.1109/SP.2019.00087
Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating fine
grained timers in Xen. In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop. 41-46.

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2013. Towards Optimization-Safe Systems: Analyzing the Impact of Undefined
Behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). Association for Computing Machinery, New York,
NY, USA, 260-275. https://doi.org/10.1145/2517349.2522728

Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings of the 34th annual
international symposium on Computer architecture (ISCA). 494-505.

Zhenghong Wang and Ruby B. Lee. 2007. New Cache Designs for Thwarting
Software Cache-Based Side Channel Attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (San Diego, California, USA)
(ISCA °07). Association for Computing Machinery, New York, NY, USA, 494-505.
https://doi.org/10.1145/1250662.1250723

Zhenghong Wang and Ruby B Lee. 2008. A novel cache architecture with en-
hanced performance and security. In 2008 41st IEEE/ACM International Symposium
on Microarchitecture. IEEE, 83-93.

Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard,
and Georg Sigl. 2018. DATA - Differential Address Trace Analysis: Finding
Address-based Side-Channels in Binaries. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD, 603-620. https:
//www.usenix.org/conference/usenixsecurity18/presentation/weiser

John Whaley and Monica S. Lam. 2004. Cloning-Based Context-Sensitive Pointer
Alias Analysis Using Binary Decision Diagrams. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implementation
(Washington DC, USA) (PLDI '04). Association for Computing Machinery, New
York, NY, USA, 131-144. https://doi.org/10.1145/996841.996859

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating
Timing Side-Channel Leaks Using Program Repair. In Proc. of the 27th ACM SIG-
SOFT Int. Symposium on Software Testing and Analysis (ISSTA 2018). Association
for Computing Machinery, 15-26. https://doi.org/10.1145/3213846.3213851

https://doi.org/10.1109/CSF.2013.11
https://doi.org/10.1109/CSF.2013.11
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1007/978-3-319-24174-6_23
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/566172.566174
https://doi.org/10.1007/s10766-018-0611-9
https://doi.org/10.1007/s10766-018-0611-9
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-copycat
https://doi.org/10.1007/11734727_14
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/ASE.2019.00060
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2976749.2978406
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1145/2517349.2522728
https://doi.org/10.1145/1250662.1250723
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/3213846.3213851

O 0NN U R W N =

[
N o= O

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

[79] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proc. of the 23rd USENIX Security
Symposium (San Diego, CA) (SEC’14). USENIX Association, USA, 719-732.
Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA. In Cryptographic Hardware and Em-
bedded Systems — CHES 2016, Benedikt Gierlichs and Axel Y. Poschmann (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 346-367.

Ting Yu and Owen Kaser. 1997. A Note on "On the Conversion of Indirect to
Direct Recursion”. ACM Trans. Program. Lang. Syst. 19, 6 (Nov. 1997), 1085-1087.
https://doi.org/10.1145/267959.269973

Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2011. Predictive Mitigation
of Timing Channels in Interactive Systems. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS '11). Association for
Computing Machinery, 563-574. https://doi.org/10.1145/2046707.2046772
Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. 2012. Language-Based
Control and Mitigation of Timing Channels. In Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA,
99-110. https://doi.org/10.1145/2254064.2254078

Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K Reiter. 2011. Homealone: Co-
residency detection in the cloud via side-channel analysis. In 2011 IEEE symposium
on security and privacy. IEEE, 313-328.

Yinqian Zhang and Michael K. Reiter. 2013. DiiPpel: Retrofitting Commodity
Operating Systems to Mitigate Cache Side Channels in the Cloud. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications Security
(CCS ’13). Association for Computing Machinery, 827-838. https://doi.org/10.
1145/2508859.2516741

(80]

[81]

[82

[83

(84

[85

A DECOY-PATH SIDE CHANNELS

We use the following snippet to show how existing constant-time
protection solutions struggle to maintain both memory safety and
real execution invariants along decoy paths, ultimately introducing
new side channels for attackers to detect decoy paths.

char last_result;

char tableA[8192];
char tableB[4096];

char secret_hash(unsigned int secret) {
if (secret < 4096) {
register char tmp = tableB[secret];
tmp “= tableA[secret];
last_result = tmp;

}

return last_result;

}

The if condition at line 6 guards the statement at lines 7-9
(two read operations followed by one write operation). Let us con-
sider the case 4096 <= secret < 8192. All the state-of-the-art
solutions [19, 52, 60, 78] would also run the corresponding de-
coy path (statements inside the condition, normally executed only
when secret < 4096), but with different code transformations. [19]
rewires the memory accesses at lines 7-9 to touch a shadow address,
therefore allowing an attacker to detect decoy path execution by
observing (three) accesses to the shadow address. [78] preloads both
tables before executing the branch, but executes the read/write op-
erations at lines 7-9 with unmodified addresses, introducing a decoy
out-of-bounds read at line 7. Such memory safety violation might
cause an exception if the memory after tableB is unmapped, which,
since the exception is left unmasked, would terminate the program
and introduce a termination-based decoy path side channel. [52]
closes such termination side channels by masking the exception,
but this strategy also introduces an exception handling-based decoy
path side channel. [60], on the other hand, replaces such an unsafe
read access with an access to a shadow address, which however
introduces the same decoy path side channel discussed for [19].

15

CCS ’21, November 14-19, Seoul, South Korea

Finally, even assuming no exception is caused by the out-of-
bounds read at line 7 and that we can even eliminate the out-of-
bounds behavior altogether without introducing other side chan-
nels, an attacker can still trivially detect decoy path execution by
side channeling the read at line 8. [19]’s shadow access would leak
decoy path execution as discussed, but so will all the other solu-
tions [52, 60, 78], which would allow an in-bound access at offset
4096 <= secret < 8192 to tableA. Such access would never happen
during real execution, breaking a program invariant on a decoy
path and introducing a decoy data-flow side channel an attacker
can use to again detect decoy path execution.

In contrast, CONSTANTINE’s combined CFL/DFL strategy would
instead ensure the very same data accesses during real or decoy
execution, preserving program invariants and eliminating decoy
path side channels by construction. Table 3 provides a detailed
comparison between CONSTANTINE and prior solutions.

B CONDITIONAL SELECTION

The ct_select primitive of §4.2 can be instantiated in different
ways. We studied how the LLVM compiler optimizes different
schemes for constant-time conditional selection to pick the best
possible alternative(s) in CONSTANTINE.

For the discussion we consider the pointer selection primitive
that we use to differentiate decoy and real store operations (i.e., to
conditionally select whether we should actually modify memory
contents), evaluating the alternatives listed below:

‘ Scheme ‘ C equivalent ‘ taken values ‘ CFL overhead ‘

1 asm cmov {0;1} 9.6x
2 ptr = taken ? ptr : (voidx)NULL {0;1} 7.5x
3 ptr = (voidx) ((size_t)ptr & (-taken)) | (size_t) {0;1} 7.3x
4 ptr = (voidx) ((size_t)ptr & taken) {0;0xff..ff} 7.7x
5 ptr = (voidx) ((size_t)ptr x taken) {0;1} 7.2x

We assume to operate on a void* ptr pointer given as input to
the ct_store primitive, and taken values being 1 on real paths and
0 on decoy ones unless otherwise stated. Instead of reporting end-
to-end overheads, we mask the slowdown from DFL by configuring
CFL to use a single shadow variable as in the solution of Coppens et
al. [19], then we compute the relative slowdowns of our protected
mulmod wolfSSL version (§7) for the different ct_select schemes,
using the default non-CT implementation (W=1) as baseline.

Scheme 1 forces the backend to emit cmov instructions at the
assembly level, similarly to predicated execution mechanism we
discussed in §2. As this choice constrains the optimizer’s decisions,
it turns out to be the worst performing alternative just as expected.
Scheme 2 is essentially an LLVM IR select statement around the
taken indirection predicate, on which the compiler can reason about
and optimize, then after IR-level optimizations the backend for most
of its occurrences emits a cmov instruction as in scheme 1, testing
the value of the taken variable for conditional assignment.

Thus, we investigated different alternatives that could avoid rely-
ing on condition flags that, besides, get clobbered in the process and
may require frequent recomputation. While mask-based schemes
3 and 4 seemed at first the most promising avenues, it turned out
that the additional operation needed either to generate the taken
mask from a boolean condition (scheme 3), or to maintain it at
run-time and combining it with the boolean conditions coming
from branch decisions (scheme 4), made these schemes suboptimal.
Scheme 5 resulted in the most simple and most efficient one be-

https://doi.org/10.1145/267959.269973
https://doi.org/10.1145/2046707.2046772
https://doi.org/10.1145/2254064.2254078
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/2508859.2516741

CCS ’21, November 14-19, Seoul, South Korea

Table 3: Technical, security, and compatibility features

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

from state-of-the-art solutions vs. CONSTANTINE.

Feature Coppens et al. Raccoon SC-Eliminator Soares et al. CONSTANTINE
control flows predicated transactional hybrid hybrid linearization
data flows . Path ORAM preloading - linearization
loop handling strategy unroll unroll unroll unroll just-in-time
integration with compiler backend IR level IR level IR level IR level
sensitive region identification user annotations | annot. + static analysis | annot. + static analysis user annotations profiling (taint)
decoy-path side channels shadow accesses read/write accesses read/write accesses shadow, safe read/write accesses no
fix variable-latency instructions (e.g., div) no sw emulation no no sw emulation
threat model code code+data code+data® code code+data
variable-length loops no no decoy paths till bound no yes
indirect calls no - - - yes
recursion fixed-depth** fixed-depth - - yes
spatial safety preserved yes no no yes yes
supported data pointers - arrays arrays arrays no restrictions

** unimplemented

tween the solutions we tested, producing the lowest overhead as it
unleashes several arithmetic optimizations (e.g. peephole, global
value numbering) at IR and backend optimization levels.

C STRIDING

One of the key performance enablers that back our radical approach
is the ability to stride over object fields efficiently. We thoroughly
tested different possible implementations, and designed different
solutions based on the size of the field that should be strode and the
granularity A at which the attacker could observe memory accesses.
Several of these solutions leverage CPU SIMD Extensions: while we
focused on AVX2 and AVX512 instructions for x86 architectures, the
approach can easily be extended to other architectures supporting
vectorization extensions (e.g., ARM SVE [64] , RISC-V “V” [4]).
We group our solutions in three categories: simple object striding,
vector gather/scatter operations, and vector bulk load/stores.

Simple Object Striding. Given an access on pointer ptr over some
field f, the most simple solution is to just access linearly f at ev-
ery A-th location. We perform each access using a striding pointer
s_ptr at the offset ptr % A of the A-th location, so that while strid-
ing a field s_ptr will match the target pointer ptr exactly once,
on the location where the memory access should happen. For load
operations we conditionally maintain the value loaded from mem-
ory, propagating only the real result over the striding, while for
store operation we load every value we access, conditionally updat-
ing it at the right location (§4.3.1). We report a simplified! snippet
of a striding load operation for a uint8_t, where the conditional
assignment is eventually realized e.g. using a cmov operation:
uint8_t ct_load(uint8_t* field, uint8_tx field_end, uint8_t* ptr) {

// Default result
uint8_t res = 0;

// Get the offset of the pointer with respect to LAMBDA
uint64_t target_lambda_off = ((uint64_t) ptr) & (LAMBDA-1);

// Iterate over the possible offsets

for(uint8_t* s_ptr = field; s_ptr < field_end; s_ptr += LAMBDA) {
// Compute the current ptr
uint8_t* curr_ptr = s_ptr + target_lambda_off;

// Always load the value
uint8_t _res = *(volatile uint8_tx)curr_ptr;

! Additional, constant-time logic is present in the implementation to deal with corner
cases, so to avoid striding outside the object if not aligned correctly in memory.

16

* cache line with preloading

// If curr_ptr matches ptr, select the value
res = (curr_ptr == ptr)? _res : res;

}

return res;

Vector gather/scatter Operations. While for small fields the simple
striding strategy presented above performs relatively well, larger
sizes offer substantial room for improvement by leveraging SIMD
extensions of commodity processors. Vectorization extensions offer
instructions to gather (or scatter) multiple values in parallel from
memory with a single operation. This allows us to design striding
algorithms that touch in parallel N memory locations (up to 16
for x86 AVX512 on pointers that fit into 32 bits). Our algorithm
maintains up to N indexes in parallel, from which to access memory
from N different locations at the same time. We manage in parallel
the multiple accessed values similarly to for simple object striding,
with the N results being merged with an horizontal operation on
the vector to produce a single value for loads.

Vector Bulk load/stores. Vectorization extensions allow us to load
multiple values from memory at once, but a gather/scatter oper-
ation is in general costly for the processor to deal with. Depending
on the value of 4 (e.g., with A = 1 or A = 4) most of the values could
lie on the same cache line. Therefore we further optimized DFL
with a third option which simply uses SIMD extensions to access a
whole cache line (or half of it with AVX2) with a single operation,
thus touching all the bytes in that line. In case of loads, the accessed
vector gets conditionally propagated with constant-time operations
based on the real address to be retrieved, while for stores it gets
conditionally updated, and always written back.

Sizing. Building on empirical measurements on Skylake X and
Whiskey Lake microarchitectures, we came up with a simple deci-
sion procedure to choose the best possible handler by taking into
account the size of the field to stride, and the granularity A at which
should be strode. Table 4 reports the average number clock cycles
we measured for a striding handler given different values of size and
A. We list only the values for load operations for brevity, as the store
handler incur in similar effects. We computed the number of cycles
needed for each handler to stride over an object as the average of
1000 executions of the same handler, each measured using rdtscp
instructions. The SIMD based measurements are based on AVX2.

We can immediately notice how bulk loads are the most effective
for small A values, as they allow for accessing whole cache lines in a
single instruction, so this is the default choice for such values. The
situation is more complex for higher A values. We speculate that

CONSTANTINE: Automatic Side-Channel Resistance
Using Efficient Control and Data Flow Linearization

Table 4: Clock cycles for different load striding handlers.

[handler [A T size | cycles |
simple 64 64 4
gather 64 64 17
bulk 64 64 9
simple 64 512 17
gather 64 512 17
bulk 64 512 26
simple 64 | 1024 34
gather 64 1024 25
bulk 64 1024 44
simple 4 64 34
gather 4 64 22
bulk 4 64 11
simple 4 512 298
gather 4 512 116
bulk 4 512 44
simple 4 1024 586
gather 4 1024 226
bulk 4 1024 101

the AVX set-up operation for the CPU, and for the management
of parallel values which should be merged together to produce
the result, are too expensive to be amortized by the few iterations
required to stride small objects. Therefore in this case we choose
the simple object striding strategy. However, for bigger objects the
gather operation is the clear winner, resulting in the minimum
overhead. The decision algorithm in pseudocode reads as:

if (LAMBDA < 16) select bulk

else if ((striding_size / LAMBDA) < 8) select simple
else select gather

D FIELD SENSITIVITY

We improved the field-sensitivity of the Andersen points-to anal-
ysis of SVF in order to delay demotion to field-insensitivity and
recover, partially or to a full extent, the intended object portions
thanks to heuristic inspired by duck typing from programming lan-
guage research. In short, our extension restricts the surface of the
abstract object that can be dereferenced to further improve the field
information precision. The extension is semantically sound for the
programs we consider, and in most cases (90% for wolfSSL) could
refine the SVF results up to the single desired field. We describe our
extension using the following running example:
%struct.fp_int = type { 132, i32, [136 x i64] } ; size = 1096
%struct.ecc_point = type { [1 x %struct.fp_int], [1 x %struct.fp_int],
[1 x %struct.fp_int] } ; size = 3288
%struct.ecc_key = type { i32, i32, i32, i32, %struct.ecc_set_typex,
i8*, %struct.ecc_point, %struct.fp_int }; size = 4416
These datatype declarations in LLVM IR describe the fp_int,
ecc_point, and ecc_key structures of wolfSSL. An expression i{8,
32, 64} denotes an integer type of the desired bit width. LLVM
IR uses pointer expressions for load and store operation that come
from a GEP (GetElementPtr) instruction such as %p below:
%V =
%»p =

<some %struct.fp_int object>
getelementptr %struct.fp_int, %struct.fp_int %v, %i32 @, %i32 1
The syntax of a GEP instruction is as follows. The first argument
is the type, the second is the base address for the computation, and
the subsequent ones are indices for operating on the elements of
aggregate types (i.e. structures or arrays). The first index operates
on the base address pointer, and any subsequent index would oper-
ate on the pointed-to expressions. Here %p takes the address of the
second 132 field of a fp_int structure. What happens with SVF is

17

CCS ’21, November 14-19, Seoul, South Korea

that it frequently reports a whole abstract object ecc_key in the
points-to set for %p: this information if used as-is would require
DFL to access all the 4416 object bytes during linearization.
Starting from this coarse-grained information, our technique
identifies which portions of a large object could accommodate the
pointer computation. In this simple example, we have that ecc_key
can host one fp_int as outer member (last field), and three more
through its ecc_key member (second-last). Hence we refine pointer
metadata to set of each second 132 field from these objects, and only
four 4-byte locations now require access during DFL. In general,
we follow the flow of pointer value computations and determine
object portions suitability for such dereferencing as in duck typing.

E RECURSION AND THREAD SAFETY

Our implementation is lackluster in two respects that we could
address with limited implementation effort, which we leave to
future work as the programs we analyzed did not exercise them.

The first concerns handling recursive constructs. Direct recur-
sion is straightforward: we may predict its maximal depth with
profiling and apply the just-in-time linearization scheme seen for
loops, padding recursive sequences with decoy calls for depths
shorter than the prevision, using a global counter to track depths.
For indirect recursion, we may start by identifying the functions
involved in the sequence, as they would form a strongly connected
component on the graph. Then we may apply standard compiler
construction techniques, specifically the inlining approach of [81]
to convert indirect recursion in direct recursion, and apply the
just-in-time linearization scheme discussed above.

The second concerns multi-threading. As observed by the au-
thors of Raccoon [52], programs must be free of data races for
sensitive operations. The linearized code presently produced by
CONSTANTINE is not re-entrant because of stack variable promotion
(§4.3.3) and for the global variable we use to expose the current
taken predicate to called functions. On the code transformation side,
an implementation extension may be to avoid such promotion, then
use thread-local storage for the predicate, and update the doubly
linked lists for allocation sites atomically. As for DFL handlers, we
may implement DFL handlers either using locking mechanisms, or
moving to more efficient lockless implementations using atomic
operations or, for non-small involved sizes (§C), TSX transactions.

F CORRECTNESS

We discuss an informal proof of correctness of the CONSTANTINE
approach. As we anticipated in §5, to prove that our programs are
semantically equivalent to their original representations, we break
the claim into two parts: control-flow correctness and data-flow
correctness For each part we assume that the other holds, so that
the initial claim can hold by construction.

For control flows, we need to show that along real paths the
transformed program performs all and only the computations that
the original one would make. First, we rule out divergences from
exceptional control flow since the original program is error-free
and CFL sanitizes sequences that may throw (e.g., division) when
in dummy execution. We then observe that by construction CFL
forces the program to explore both outcomes of every branch, and
the decision whether to treat each direction in dummy execution

CCS ’21, November 14-19, Seoul, South Korea

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida

Table 5: Run-time overhead analysis of different CONSTANTINE configurations (i.e.,, A = 1, AVX2). The numbers for SC-
Eliminator and Soares et al. were obtained from executing the publicly available artifact evaluation material for their papers.

program AVX512(A=1) | AVX512(A=4) | AVX512 (A =64) | AVX2 (A =4) | AVX2 (A =64) [SC-Eliminator | Soares et al.
aes 1.13 1.13 1.08 1.22 1.08 1.11 1.02
des 1.12 1.19 1.14 1.36 1.15 1.09 1.00
des3 1.49 1.49 1.36 1.86 1.37 1.12 1.02
CHRONOS anubis 1.29 1.29 1.12 1.55 1.22 1.06 1.00
cast5 1.13 1.13 1.06 1.25 1.12 1.06 1.02
cast6 1.13 1.13 1.08 1.13 1.07 1.05 1.00
ferypt 1.04 1.04 1.03 1.06 1.01 1.05 1.00
khazad 1.13 1.13 1.09 1.23 1.07 1.30 1.00
s-cp aes_core 1.12 1.12 1.06 1.01 1.05 1.06 1.04
cast-ssl 1.23 1.23 1.10 1.38 1.15 1.17 1.01
aes 1.05 1.05 1.03 1.09 1.01 1.01 -
cast128 1.02 1.02 1.01 1.03 1.01 1.05 -
BOTAN des 1.01 1.01 1.01 1.01 1.01 1.08 -
kasumi 1.01 1.01 1.01 1.03 1.01 1.01 -
seed 1.02 1.02 1.01 1.03 1.01 1.03 -
twofish 1.14 1.14 1.12 1.21 1.15 1.04 -
3way 1.00 1.00 1.00 1.00 1.00 1.03 1.15
APP-CR des 1.24 1.24 1.09 1.27 1.06 1.08 1.11
loki91 1.51 1.51 1.43 1.48 1.48 1.97 1.24
camellia 1.02 1.02 1.01 1.02 1.01 1.08 1.01
LIBGCRYPT des 1.06 1.06 1.06 1.05 1.09 1.03 1.01
seed 1.18 1.18 1.10 1.21 1.01 1.15 1.01
twofish 1.97 1.97 1.92 2.45 2.10 1.41 1.24
binsearch 1.33 1.33 1.18 1.30 1.16 - -
dijkstra 3.87 3.45 1.51 2.83 1.50 - -
RACCOON findmax 1.00 1.00 1.00 1.00 1.00 - -
histogram 2.66 2.66 1.68 4.39 1.87 - -
matmul 1.00 1.00 1.00 1.00 1.00 - -
rsort 1.87 1.87 1.84 1.50 1.45 - -
aes 1.13 1.13 1.06 1.33 1.11 - -
arc4 1.07 1.07 1.03 1.08 1.03 - -
PYCRYPTO blowfish 5.07 5.07 3.17 10.58 3.23 - -
cast 1.09 1.09 1.04 1.16 1.08 - -
des3 1.06 1.06 1.04 1.08 1.05 - -
tls-rempad-luk13 1.01 1.01 1.01 1.01 1.01 - -
B/REL aes_big 1.02 1.01 1.01 1.02 1.01 - -
des_tab 1.04 1.04 1.02 1.07 1.03 - -
geomean (total) 1.26 1.26 1.16 1.34 1.17 1.12 1.05

depends on the taken predicate value. CFL builds this predicate as
the combination of the control-flow decisions that the (original)
program takes on the program state, and from the data flow argu-
ment decoy paths have no effects on such state. All the linearized
branch directions will be executed as many times and in the same
interleaving observable in the original program; as for the special
loop case, the amount of real and decoy iterations depends on the
original loop condition and the taken predicate, so its real iterations
closely match the original loop. This completes the argument.

For data flows, we need to show that values computed in dummy
execution cannot flow into real paths, and that decoy paths preserve
memory safety. The points-to metadata fed to DFL load and store
wrappers make the program access the same memory objects along
both real and decoy paths, and allocation metadata ensure that
those objects are valid: memory safety is guaranteed. Also, only
real paths can change memory contents during a store, hence only
values written by real paths can affect data loads. Thus, we only
need to reason about data flows from local variables assigned in
dummy execution. LLVM IR hosts such variables in SSA virtual reg-
isters, and at any program point only one variable instance can be
live [55]. For a top-level linearized branch, a ct_select statement
chooses the incoming value from the real path (§4.2.1). For a nested
branch (Figure 2) both directions may be part of dummy execution.
Regardless of which value the inner ct_select will choose, the
outer one eventually picks the value coming from the real path that
did not contain the branch. Extending the argument to three or

18

more nested branches is analogous: for a variable that outlives a
linearized region, whenever such variable is later accessed on a real
path, the value from a real path would assign to it (otherwise the
original program would be reading an undefined value or control-
flow correctness would be violated), while in decoy paths bogus
value can freely flow. We discussed correctness for loops in §4.2.4.

G COMPLETE RUN-TIME OVERHEAD DATA

Table 5 shows the complete set of our performance-oriented ex-
periments: we benchmarked CoNSTANTINE with different A values
(1,4,64) and SIMD capabilities (AVX2 and AVX512), and also ran
the artifacts from [78] and [60] on the same setup used for §6. For
the latter we did not try the Raccoon microbenchmarks, mostly due
to compatibility problems and limitations of the artifacts, while the
SCE suite was part of their original evaluation (Soares et al. leave
the botan group out of the artifact evaluation harness). Both sys-
tems provide much weaker security properties than CONSTANTINE,
yet the average overhead numbers we observe are similar. Also, the
availability of AVX512 instructions brings benefits for the A = 64
setting as they allow DFL to touch more cache lines at once over
large object portions (§C). Interesting, protection for the presently
unrealistic A = 1 attack vector leads to overheads that are identical
to the A = 4 configuration for MemJam-like attacks, with di jkstra
being the only exception (3.87x vs 3.45x).

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Constantine
	4.1 Overview
	4.2 Control Flow Linearization
	4.3 Data Flow Linearization
	4.4 Support Analyses
	4.5 Discussion

	5 Security Analysis
	6 Performance Evaluation
	7 Case Study
	8 Conclusion
	References
	A Decoy-path side channels
	B Conditional Selection
	C Striding
	D Field Sensitivity
	E Recursion and Thread Safety
	F Correctness
	G Complete Run-Time Overhead Data

