
Practical Password Hardening based on TLS

Constantinos Diomedous and Elias Athanasopoulos
{cdiomi01,eliasathan}@cs.ucy.ac.cy

University of Cyprus

Abstract. Text-based passwords are still the dominant form of user
authentication in remote services. Beyond the many usability issues as-
sociated with handling several text-based passwords, security is also an
important dimension. Through the years, a significant amount of on-line
services has been compromised and their stored passwords have been
leaked. Once the database is compromised, it takes little time for a pro-
gram to crack the cryptographically hashed (weak) passwords, no matter
the algorithm used.
In response to this problem, researchers have proposed cryptographic
services for hardening all stored passwords. These services perform sev-
eral sessions of cryptographic hashing combined with message authenti-
cation codes. The goal of these services is to coerce adversaries to use
them while cracking the passwords. This essentially transforms off-line
password cracking to on-line.
Although these services incorporate elaborate cryptographic schemes for
password hardening, it is unclear how easily typical web sites can utilize
them without outsourcing the functionality to large providers. In this pa-
per, we take a systems approach for making any web site that is serviced
through TLS capable of strongly hardening their passwords. We observe
that any TLS-enabled web server is already equipped with strong cryp-
tographic functions. We modify mod ssl, the module that offers TLS to
any Apache web server, to act as a password-hardening service. Our eval-
uation shows that with an overhead similar to adapting hash functions
(such as scrypt and bcrypt), our proposal can protect even the weakest
passwords, once they are leaked.

1 Introduction

User authentication is one of the very critical functions offered by almost all
Internet services. Nowadays, after several decades of using simple text-based
passwords for user authentication, no alternative method has been considered
mainstream. The wide use of text-based passwords has several consequences,
such as difficulties associated with handling a large set of passwords by the
users themselves, but, also, and quite importantly, security implications that
affect users but cannot be attributed to their faults. For instance, since web
sites store user passwords, attackers can leverage site vulnerabilities to exfiltrate
them. Although it is rare to store text-based passwords in plain 1, but just the

1 But not unseen. [6]

cryptographic digest of them, attackers can still use powerful infrastructures [5]
to crack the ones that are based on dictionary words (or combinations of them).
Leaking the password database has affected quite a few Internet services [24],
some of them being fairly established [22, 8, 3, 9], and, nowadays, it is estimated
that leaked passwords are in the order of several millions.

To address this major threat of password leaks, services have started to em-
ploy password-hardening techniques. Two major families of such hardening tech-
niques exist today. The first one is to use, on purpose, slow cryptographic hash
functions, such as scrypt [12] and bcrypt [29]. These cryptographic hash func-
tions are designed to adapt on hardware evolution. For instance, bcrypt uses
a significant amount of CPU cycles, while scrypt uses a significant amount of
memory for computing a cryptographic digest. This slowdown is by design for
slowing down attackers that aim at cracking cryptographic digests off-line. Un-
fortunately, no matter the slowdown, if the password is weak 2, then it can be
still guessed.

The second family of password-hardening techniques is based on using a
cryptographic service, constructed entirely for the purpose of computing hard-
ened passwords. Hardening here evolves several round of cryptographic hashing
and message authentication codes (MAC). With such a service in place, verify-
ing a password means involving the service. This essentially transforms off-line
password cracking to on-line.

modssl-hmac. Based on the aforementioned observations, in this paper we
present a simple password-hardening service, namely modssl-hmac, which can
be deployed immediately by any web application serving content over TLS.
modssl-hmac does not use cryptographic hashing for storing passwords, but
rather an HMAC, which involves using the TLS private key of the web server.
modssl-hmac does not expose any sensitive key to the web application. Instead,
modssl-hmac leverages existing cryptographic elements, already installed in the
web server. modssl-hmac is a modified mod ssl, the standard Apache module
for TLS, which, in addition to offering TLS encryption, supports HMACs of
messages with the TLS private key of the web server.

modssl-hmac does not prevent password leaks. However, cracking of pass-
words, once they are leaked, is only possible if the TLS private key of the web
server is also leaked. In this case, we consider that the threat model of password
leaks is no more relevant, since an attacker that has access to the TLS private
key can launch by far more stronger attacks, such as impersonating the web
server [23].

Finally, modssl-hmac offers a high level of security against password cracking
without using any external password-hardening service and with an overhead of
the order of magnitude of adapting hashing (scrypt and bcrypt), however,
without being vulnerable to weak passwords. With modssl-hmac in place, even
simple passwords that are based on dictionary words cannot be cracked.

2 The term weak here is not associated necessarily with password entropy [15], but
with guessing probability. Even high-entropy passwords can be cracked if they are
based on known words [1].

Protecting the weak links As we review in our related work (Section 6),
established services, such as Facebook [11], invest in building cryptographic ser-
vices for hardening passwords, some of them being fairly sophisticated and elab-
orate [19, 27]. We expect that less established services, such as web sites with a
relatively small user base, will be reluctant to build such systems. A possibil-
ity is for less established web sites to use cryptographic services built by larger
providers, however, it is not clear what the price will be for this, at this point.
Additionally, it is vital to protect the less established web sites, in the context
of password leaks, since due to password reuse [20, 16] a leak in a random web
site may be a huge threat for an established service. For instance, Basecamp,
as discussed in a very recent post, is monitoring password leaks in the wild for
resetting their own users’ passwords [7]. With modssl-hmac we focus on exactly
this. Protect, easily, any web site, even sites that are co-located over a hosting
provider, by just installing a special version of the de facto Apache module for
serving TLS connections.

Contributions This paper makes the following contributions.

– We present modssl-hmac, a password-hardening technique based on a sys-
tems approach. modssl-hmac leverages existing cryptographic elements that
can be found in any web server that serves content over TLS [18] to trans-
form simple cryptographic hashes to message authentication codes, that is
impossible to crack off-line, unless the private key of the web server is com-
promised.

– We implement and evaluate modssl-hmac in Apache by modifying mod ssl,
the standard Apache module for TLS support. Any web application can
leverage our service by simply issuing specific requests accepted by the ap-
plication only locally.

– We deploy modssl-hmac in existing web applications, such as WordPress [10]
and Drupal [2]. Both applications can benefit from the password-hardening
service of modssl-hmac, by changing less than 50 LoCs, and enjoy the secu-
rity gains immediately.

2 Background and Threat Model

In this section we provide background information, which we think is nec-
essary for understanding the rest of the paper. We briefly discuss how text-
based passwords are stored today, and the rationale behind this, we then pro-
vide an overview of services that use advanced cryptographic techniques for
offering stronger protection against password leaks (a more detailed discussion
on password-hardening services is provided in Section 6, where we review re-
lated work), and then we discuss keyed hashing, which is a fundamental con-
cept of modssl-hmac. Finally, we define the threat model that is interesting for
modssl-hmac and which attacks are considered out of scope.

2.1 Password Storage

Text-based passwords need to be stored for validating future user logins. Al-
though this sounds trivial, it is alarming that several services have failed multi-
ple times to get it right. We leave out of the discussion services that do nothing
special for password storage [6] and we discuss other common mistakes.

A common misunderstanding is that using encryption should be enough for
securing passwords. Unfortunately, the common attack vector, interesting for this
paper, is that passwords can be leaked, and keys used to encrypting passwords
can be leaked, as well. Therefore, simply encrypting passwords will not make
things better. Instead, a cryptographic hash function should be used, and not
an encryption cipher, since the output of such function cannot be reversed by
someone that has access to the key.

A second misunderstanding is how to validate an existing password digest.
Some services allow the hash computation to be performed at the client-side
(for instance, in the web page through JavaScript). Users may think that such
practice is good, since their password never reaches the web service, however, the
described procedure is fairly wrong, since allows attackers replaying password
digests, without even trying to actually crack them.

Finally, just hashing the password is not enough, since equal passwords will
produce equal digests. A common practice is to use a salt, a random and unique-
per-password prefix that, if concatenated to the password, will make the final
digest unique. The salt can be leaked as well, but it does not matter. The salt is
not meant to protect passwords from cracking, but rather hiding known digests
and common, between different users, passwords.

modssl-hmac is not based directly on a cryptographic hash function but on
a Message Authentication Code (MAC), which we further discuss in detail later
in this section. modssl-hmac uses secret key, but it does not make reversing a
stored password possible. An attacker that has leaked the secret key used by
modssl-hmac is powerful, but as passwords are concerned they cannot be simply
reversed; they need to be cracked, as it is the case with standard hashing, or be
sniffed through a man-in-the-middle attack [23] (see the security evaluation in
Section 5).

2.2 Password-hardening Services

Services have started using password hardening as an answer to the several in-
cidents involving leaks of databases storing passwords. The first, so far known,
service to do so is Facebook [11], which, contrary to the standard (aforemen-
tioned) techniques used for storing passwords, uses a remote service to apply
hashing. In addition, to standard cryptographic hashing, the service also uses
keyed hashing, commonly known as Message Authentication Code (MAC). Es-
sentially, Facebook stores a single user identifier, which is connected to an iden-
tifier stored in the cryptographic service. The password of the user is handled by
the cryptographic service and stored there after it is hashed and MACed several

times. On such a setup, an attacker needs to query the cryptographic service for
cracking passwords.

Inspired by this work, several academics followed up by constructing elabo-
rate and strong cryptographic services. We review all of these works in detail in
Section 6. modssl-hmac can be also seen as a cryptographic service for hardening
passwords. The difference is that modssl-hmac is not realized a third-party ser-
vice, but as a cryptographic service that lives inside the web application, itself.
In fact, modssl-hmac is based on existing cryptographic primitives appearing
offered by all web applications that communicate using TLS.

2.3 Keyed Hashing

Cryptographic hashing when applied to passwords is usually keyless. A crypto-
graphic hash function allows anyone to compute the same output (known also
as digest), as long they have access to the input, but makes computing the input
very hard for those that have only the output. A cryptographic hash function
can be combined with a key for creating a Message Authentication Code (MAC).
The key is not meant to make the function reversible. On the contrary, a MAC is
a keyed cryptographic hash function, meaning that it allows anyone to compute
the same output, as long they have access to the input and the key.

modssl-hmac builds on this cryptographic concept and focuses on selecting
the right key. Instead of picking a random key, which can be stored in the
database and leaked along with the passwords, modssl-hmac uses, transparently,
a fairly sensitive key, the private key used for TLS, which is not stored in any
database and should be kept secure. An attacker that has access to this private
key can launch more severe attacks than password cracking, and an attacker
that has no access to this key cannot crack the passwords at all.

2.4 Threat Model

Authentication based on text-based passwords can be attacked using several
different ways. In this paper, we focus on the password leaks threat model. In
detail, we make the following assumptions.

– A web service stores all (salted) passwords, cryptographically hashed, in a
database, which is eventually leaked by the attacker;

– the database contains crackable passwords, for instance passwords that are
based on combinations of dictionary words, or passwords that are based on
known replacement policies (i.e., use 1 instead of i, or 0 instead of o) [16];

– the attacker has the computational resources to crack several of these crack-
able passwords;

– the attacker has not full and permanent access to the attacked web service;

– the web service operates over TLS;

– modssl-hmac accepts only local and TLS-encrypted connections.

We discuss some of these assumptions in more detail. The assumption that
some of the passwords are crackable, even when adapting hashing is used [12, 29],
is realistic for several reasons. First, by studying existing leaks, researchers have
managed to model how passwords are re-used from service to service [16], taking
into account common password-creation policies [32]. Therefore, past leaks can
make cracking of new leaks possible. Second, and beyond past leaks, there is no
formal guarantee that users select passwords based on a logic that can not be
eventually cracked off-line. Third, we assume that the attacker has also leaked
the salts stored in the database. Salted passwords still slow down attackers in
massively revealing easy passwords, but they do not stop them from cracking
some of the passwords.

Threat models that our outside the scope of this paper are those that are
based on stealing passwords using social engineering or other mechanisms, such
as phishing [17] and interactive phishing [21], or on-line cracking of very easy
passwords. These threat models exploit weaknesses of passwords but they are
not associated with password leaks.

3 Architecture

In this section we provide a high-level overview of the modssl-hmac architecture.
We begin with a generic discussion of the system, we then discuss how the
Apache module works, which is the core component of our system, and how a
web application can leverage the services we provide.

3.1 Overview

modssl-hmac provides to any website’s back-end the functionality of easily se-
curing a text-based password using a MAC, instead of a cryptographic hash
function. In particular, HMAC [25] is used as provided by OpenSSL; the afore-
mentioned implementation uses internally SHA-256 for hashing. The HMAC uses
bits from the private key of the server to compute (internally) the cryptographic
hash. 3 Our system is assembled as a modified version of mod ssl [4], the de
facto Apache module that provides TLS connections to web applications. We
have implemented modssl-hmac only for Apache (see Section 4), but it should
not be hard to support other web server software (e.g., nginx).

For better understanding the functionality of modssl-hmac, we abstractly
divide our work in two parts. The service that is realized using a hook in mod ssl

that processes an encrypted HTTP request and returns the HMAC of a string
to the back-end of the website, and the front-end of the web application (e.g.,
WordPress) that calls the service with a given HMAC for creating new or for
validating already stored credentials.

3 Involving a secret key in the computation can be seen also as adding pepper [15] to
the password.

3.2 Back-end as an Apache module

In a nutshell, modssl-hmac enables the computation and use of HMACs instead
of typical cryptographic hash digests to any web application. On a first read,
this seems to be a trivial operation. For example, it could be realized by using an
HMAC algorithm directly to the target web application. In this paper, we argue
that this might not be a good idea, since an important step for transforming
an unkeyed cryptographic hash function to a keyed one, is the selection and the
(safe) storage of the key involved. Enabling simply HMAC with a symmetric
key stored in the password database will not make things better than they are
today.

modssl-hmac enables HMAC computation by carefully leveraging existing
functionality present in any web application that communicates using TLS.
mod ssl is the module that provides SSL and TLS support for the Apache HTTP
Server. Our system comes as a modified version of mod ssl which implements
particular hooks that offer HMAC computation as a service.

Therefore, modssl-hmac processes all encrypted GET requests which target
localhost/hmac-service. The particular URI takes a password to be HMACed
and rounds as parameters. The latter signifies how many rounds of hashing are
involved. Several rounds of hashing makes cryptanalysis of the produced HMACs,
for revealing the private key, harder, upon a database leakage. The default value
of rounds used in the evaluation (Section 5) is one. Only requests originating
through a TLS-encrypted connection are served, and only the ones which are
sent locally. For instance, a valid request should target:

https://localhost/hmac-service?password=password in plain&rounds=N

Every TLS connection on the Apache server has an SSL context that holds
all the data needed to keep the TLS connection alive. This context includes the
data of the private key used to realize the TLS connection. From this context,
our service extracts bits of the private key and uses it as the parameter to the
OpenSSL HMAC-SHA256 function alongside the password that has been parsed
from the request. The result is be returned to the client as a 64 character long
string that represents the hexadecimal value of the hash.

We stress here that the web application has not direct access to the private-
key information and beyond extracting HMAC computation, where the private
key is involved, there is nothing else to be leveraged from modssl-hmac. In
fact, the HMAC computation provided is through an existing stack used to
realize TLS, and no additional cryptographic components are added. A local
attacker that has access to the web server could in theory issue several HMAC
computations for cracking HMACed passwords, however this is much harder than
off-line password cracking (see our detailed security evaluation in Section 5).

3.3 Enabling modssl-hmac in a web application

Any web application that runs on the Apache web server can instantly lever-
age modssl-hmac. It is just a matter of replacing the standard mod ssl with

Host

Web Server

module

mod_ssl

module

Web
App Client

(2) https://localhost/hmac?password

(1) plain password

(3)
HMAC(password)

https://localhost/hmac-service?password

Fig. 1. Overview of the architecture of modssl-hmac. Web clients send their requests
towards the web application (1). Once a particular request is issued, then the web
application can use cryptographic operations, already available to the Apache process,
through modssl-hmac (2). These services can generate the HMAC of strings, and there-
fore the web application can leverage strong HMACs of passwords (3), that are hard
to be cracked off-line. In the same fashion, the web application can validate an existing
HMAC computation for checking existing credentials.

modssl-hmac. In Section 4 we provide further details of how easily modssl-hmac

can be enabled in WordPress and Drupal, and we evaluate both web apps in
Section 5. Here, we expand on the generic steps a developer should follow for
enabling modssl-hmac.

Assume a web application that supports multiple users through text-based
passwords. A typical functionality that the web application supports is the cre-
ation of a new login/password pair. This process eventually needs to store the
user-selected password in the database. Most web applications, today, leverage
cryptographic hash functions and store digests, instead of passwords in plain.
For a successful login, the web application receives again the password in plain,
re-computes the digest and checks if the recomputed one is equal to the stored
one.

With modssl-hmac in place, the whole procedure described is slightly changed
to using the cryptographic service provided for computing the keyed digest of the
password. This service is provided only over encrypted HTTP local connections.
For instance, the web application can issue a GET request, locally, and receive
the HMAC of the password, which can be further stored in the database, or
validated in a future login procedure.

The overall architecture is depicted in Figure 1. Web clients can send, as
usual, their requests towards the web application. Once a particular request is

issued, for instance, for creating a new user account, then the web application can
use cryptographic operations, already available to the Apache process, through
modssl-hmac. These services can generate the HMAC of strings, and therefore
the web application can leverage strong HMACs of passwords, that are hard
to be cracked off-line. Additionally, in the same fashion, the web application
can validate an existing HMAC computation, for instance, for checking existing
credentials.

4 Implementation

We have implemented modssl-hmac as an Apache module, therefore it can be
instantly enabled to all web applications that run over Apache. Alternatively, it
is straightforward to realize modssl-hmac to other web infrastructures, as long
as they support TLS connections. As example, we have modified WordPress and
Drupal, two fairly popular web applications, for hardening passwords using the
services exported by modssl-hmac. We now expand on all Apache-based mod-
ifications and then on all web-application modifications required for deploying
modssl-hmac.

4.1 Module construction

modssl-hmac builds on the existing mod ssl module by adding a new hook. This
can be done by modifying mod ssl.c, where all the hooks needed to the Apache
for serving TLS connections are set. Our hook is set as APR HOOK FIRST and thus
it is executed as soon as possible in the request pipeline. We depict here the part
where the hook is established.

1 . . .
2 #inc lude ” hasher . h”
3 . . .
4 s t a t i c void s s l r e g i s t e r h o o k s (a p r p o o l t ∗p) {
5 . . .
6 ap hook handler (hasher handler , NULL, NULL, APR HOOK FIRST) ;
7 . . .
8 }
9 . . .

In Figure 6, listed in the Appendix A, we depict the core code of modssl-hmac.
Here, we reference lines of code for each of the basic steps modssl-hmac does,
but reading the code is not necessary to understand the mechanics. Thus, the
main handler of modssl-hmac does the following.

1. Declines any requests that are not local and that do not have arguments
(i.e., no password); (lines 2-5)

2. Checks that the connection uses TLS, and drops any non-encrypted one;
(lines 9-10)

3. Reads the private key –used for TLS– from the SSL context and stores it to
a buffer; if the private key is not available declines the request; (lines 12-19)

4. Decodes the argument (i.e., password) from the request’s URL; if the plain-
Password is not correctly encoded, the request is declined; (lines 24-28)

5. Calls the HMAC function of the OpenSSL library with parameters: (a) the
cryptographic hashing function (SHA256), (b) the private key as the key for
the computed HMAC, and (c) the password to be hashed. (lines 30-34)

6. Returns the keyed digest to the client in the form of an encrypted HTTP
response. (lines 35-37)

We now discuss how a web application, such as WordPress and Drupal can
be modified to support modssl-hmac.

4.2 WordPress

WordPress [10] is a very popular web application for managing and publishing
content in the web. The application is open source, written in PHP, and is
already installed and used by several web sites. Since we have access to the
code, we begin by analyzing the existing system in terms of storing passwords.
WordPress by default supports different user accounts and roles, therefore, there
is existing functionality for creating new accounts (associated with passwords)
and subsequently authenticating them by checking their credentials.

To our surprise, the cryptographic hashing algorithm used by default in
WordPress is MD5 [30]; a hash function, which is considered insecure [34], due
to easily created collisions, and is advised not to be used for anything serious.
WordPress hashes each (salted) password with MD5 and the output digest en-
ters, again, the MD5 hash function. This is repeated for 8,192 (in Section 6 we
review cryptographic services, which they perform similar repeated hashing/-
MACing and their result is called an onion).

In Figure 2 we list a small snippet, taken from WordPress, which depicts the
aforementioned procedure.

1 f unc t i on c r y p t p r i v a t e ($password , $ s e t t i n g) {
2 $count = 8192 ;
3 . . .
4 $hash = md5($ s a l t . $password , TRUE) ;
5 do {
6 $hash = md5($hash . $password , TRUE) ;
7 } whi le (−−$count) ;
8 . . .
9 }

Fig. 2. The default hashing algorithm used by WordPress.

1 . . .
2 $c u r l = c u r l i n i t () ;
3 c u r l s e t o p t a r r a y ($cur l , array (
4 CURLOPT RETURNTRANSFER => true ,
5 CURLOPT URL =>
6 ” https : // l o c a l h o s t /hmac−s e r v i c e ? password=” . ur l encode ($ s a l t

. $password) ,
7 CURLOPT USERAGENT => ’ l o c a l ’ ,
8 // Set to f a l s e f o r a s e l f −s igned c e r t i f i c a t e .
9 CURLOPT SSL VERIFYPEER => t rue

10

11)) ;
12 $hash = c u r l e x e c ($ c u r l) ;
13 . . .

Fig. 3. The hashing algorithm used in WordPress when modssl-hmac is in place.

Replacing the default hashing function in WordPress for using modssl-hmac

is fairly easy. First, WordPress is modular, therefore, we can ship the new func-
tionality as a module. A developer that needs to take advantage of modssl-hmac
needs to just include our module and then all password hashes are outsourced
to modssl-hmac.

Furthermore, our WordPress module does not perform any cryptographic
operation on data. Instead, it communicates with modssl-hmac, which is re-
sponsible of all cryptographic operations. Recall, that modssl-hmac is essen-
tially an enhanced mod ssl version and, in practice, modssl-hmac delivers all
cryptography used for serving TLS connections. This is important, since, for
instance, a cryptographic hash function written in PHP may be implemented
incorrect, while modssl-hmac utilizes the cryptographic algorithms as imple-
mented in OpenSSL.

In Figure 3 we list the default hashing algorithm of WordPress replaced by
modssl-hmac. Observe that first we create an HTTPS GET request with the
help of curl. We then send a request to localhost/hmac-service using as a
parameter the salt concatenated with the password that needs to be secured.
Notice that we still need to use a salt for prohibiting identical passwords to be
mapped to the same HMACs. For testing this in a development environment,
we support disabling the SSL certificate check so that it can be used with a
self-signed certificate. Now, we can utilize this in two modes: (a) create a new
HMAC for a given password and store it to the database (account creation), and
(b) check a generated HMAC with one already saved in the database (password
validation).

4.3 Drupal

Another very popular content management system is Drupal [2]. Again, the web
application is open-source, it is built in PHP as it is the case with WordPress, and
since Drupal supports user accounts, there is a default function for computing
hashing passwords. In contrast with WordPress, Drupal does not use MD5, but
SHA512 [28], which is considered a strong hash function. In a similar fashion
with WordPress, Drupal performs several hashing rounds for a given password,
which results to an onion of 65,536 layers of SHA512 hashing.

The default implementation of Drupal, taken from PhpassHashedPassword.php,
is depicted in Figure 4. We can replace the default hashing algorithm of Drupal
in a very similar fashion with what we did for WordPress. In Figure 5, we depict
the code needed to be inserted as a module in Drupal for taking advantage of
the cryptographic services provided by modssl-hmac.

1 pub l i c func t i on hash ($password) {
2 re turn $th i s−>crypt (’ sha512 ’ , $password , $ th i s−>g e n e r a t e S a l t

()) ;
3 }
4

5 protec ted func t i on crypt ($algo , $password , $ s e t t i n g) {
6 . . .
7 $count = 65536;
8 . . .
9 $hash = hash ($algo , $ s a l t . $password , TRUE) ;

10 do {
11 $hash = hash ($algo , $hash . $password , TRUE) ;
12 } whi le (−−$count) ;
13 . . .
14 }

Fig. 4. The default hashing algorithm used by Drupal.

5 Evaluation

In this section we evaluate modssl-hmac in terms of security, based on the threat
model we have discussed in Section 2, and in terms of performance. Finally, we
discuss various potential limitations of our system in Section 5.3.

5.1 Security

modssl-hmac hardens passwords to resist any off-line cracking attempt. Accord-
ing to the threat model, as defined in Section 2.4, we assume that an attacker

1 pub l i c func t i on hash ($password) {
2 re turn $th i s−>crypt (’mod−s s l−hmac ’ ,
3 $password , $ th i s−>g e n e r a t e S a l t ()) ;
4 }
5

6 protec ted func t i on crypt ($algo , $password , $ s e t t i n g) {
7 . . .
8 $c u r l = c u r l i n i t () ;
9 c u r l s e t o p t a r r a y ($cur l , array (

10 CURLOPT RETURNTRANSFER => true ,
11 CURLOPT URL =>
12 ” https : // l o c a l h o s t /hmac−s e r v i c e ? password=” . ur l encode ($ s a l t

. $password) ,
13 CURLOPT USERAGENT => ’ l o c a l ’ ,
14 // Used f o r debugging with s e l f −s igned c e r t i f i c a t e s .
15 CURLOPT SSL VERIFYPEER => f a l s e
16 // Disab le SSL c e r t i f i c a t e checks .
17

18)) ;
19 $hash = c u r l e x e c ($ c u r l) ;
20 . . .
21 }

Fig. 5. The hashing algorithm used in Drupal when modssl-hmac is in place.

has leaked the database of a service where all passwords (and their salts) are
stored. We, also, assume that the attacker has strong cracking capabilities, in
terms of computational resources, and that there are crackable passwords in
the database. Here, we refer to crackable passwords as those that are based on
dictionary words, or on known replacement policies (i.e., use 1 instead of i, or
0 instead of o). With these assumptions, these passwords, even if hashed with
bcrypt, will be eventually cracked.

In contrast, even the simplest password (i.e., 12345) cannot be cracked off-
line when modssl-hmac is used. In fact, an attacker can start cracking a pass-
word database produced using modssl-hmac only if the key used to produce
the HMACs is also leaked. Of course, the attacker can use on-line guessing for
very simple passwords, nevertheless, several mechanisms can kick in while brute-
forcing simple passwords on-line [33].

As we have already stressed cracking passwords produced by modssl-hmac

can be done only when the key used in the HMAC computation is known. Nev-
ertheless, this key is not stored in any database. In fact, modssl-hmac uses bits
from the private key used by the web application to serve encrypted connec-
tions over TLS. An attacker that manages to leak this key, can start cracking
the password database as usual, and, in this case, modssl-hmac does not offer

Table 1. Overhead in using modssl-hmac for password hardening in milliseconds. Note
that modssl-hmac is less expensive from Drupal and close to the default overhead of
bcrypt. The only schemes that have better performance than modssl-hmac are faster
bcrypt (with cost 9 or 8), which in this context should be consider weaker compared
to the default, and WordPress which uses a very insecure cryptographic hash function,
namely MD5.

Hashing Scheme Mean Deviation Min Max

WordPress (8,192 iterations of MD5) 2.22 0.51 1.50 5.53

bcrypt (cost 12) 249.60 16.02 239.43 466.87

bcrypt (cost 11) 124.68 7.90 119.77 234.65

bcrypt (cost 10 - default) 62.42 3.98 59.95 121.2

bcrypt (cost 9) 31.29 2.02 30.05 59.82

bcrypt (cost 8) 15.72 1.02 15.09 32.39

Drupal (65,537 of SHA1) 65.16 15.89 47.20 206.60

modssl-hmac 50.23 7.80 38.25 135.19

more protection than the cryptographic scheme used in HMAC. However, we
stress that an attacker that has leaked the private key used to sign (or decrypt)
messages for the TLS protocol is a strong attacker, outside of our threat model.
In fact, such an attacker can launch several severe attacks without needing any
access to the users’ passwords[23].

Last but not least, even in the unfortunate case when the private key of the
web site is leaked, modssl-hmac is still not trivially bypassed. modssl-hmac does
not use this key for encryption, but for HMACing the password, therefore leaking
the key does not mean that passwords can be decrypted. If the attacker really
needs to crack the database (although they can simply impersonate the server
and sniff all transmitted passwords), they need to brute-force the HMAC. This
can be further hardened if bcrypt or scrypt is used for the MAC computation.

5.2 Performance

In this part we evaluate the overhead imposed by modssl-hmac while creating
and validating MACs of passwords. To this end, we run several popular crypto-
graphic hashing algorithms, in addition to the MAC used by modssl-hmac, for
10,000 times. For each iteration, we hash a random password of length between 8
and 60 characters. Allowed characters for the password generation are in the fol-
lowing sets: (a) ABCDEFGHIJKLMNOPQRSTUVWXYZ (capital letters), (b) 0123456789
(digits), (c) abcdefghijklmnopqrstuvwxyz (non-capital letters), and (d) @#$&*
(special characters).

In Table 1 we compare modssl-hmac with the default hashing scheme of
WordPress and Drupal, as well as with several configurations of bcrypt [29].
Note that modssl-hmac is less expensive from Drupal default, while being more
secure, and our overhead is close to the default overhead of bcrypt. We stress
here that bcrypt is designed on purpose for slowing down hashing operations,
and therefore password cracking. In contrast, modssl-hmac does not just slow

down cracking but completely prevents it. The only schemes that have better
performance than modssl-hmac are faster bcrypt (with cost 9 or 8), which in
this context should be consider weaker compared to the default, and WordPress
which uses a very insecure cryptographic hash function, namely MD5.

Therefore, we conclude that the added security offered by modssl-hmac

comes with a similar performance penalty with the one imposed by state-of-the-
art hashing schemes, such as bcrypt, which are less secure than modssl-hmac.
Deploying modssl-hmac to a Drupal-based web application does not make any
significant difference in terms of performance, while deploying modssl-hmac to
a WordPress-based web application may introduce performance overhead, but
we need to keep in mind that the default scheme of WordPress is fairly weak.

5.3 Limitations

modssl-hmac can be easily deployed in web apps, as long as TLS is supported.
However, there are certain cases where deployment can become complicated.
Here we discuss such cases.

Migration of old passwords. Naturally, modssl-hmac is designed to be ap-
plied to existing web apps, which may already store several passwords in the form
of cryptographic digests. Migrating these passwords, when the plain password is
not present, is not straightforward. For this, we provide a script that converts
all existing digests to HMACs, by using the digest of the (stored) password and
not the plain one. Additionally, modssl-hmac supports a migration option, upon
a users logs in successfully, and converts the migrated HMAC to a new HMAC,
which is based on the plain password instead of the digest.

SSL certificate renewal/revocation. A central concept of modssl-hmac is
involving the private key used for TLS in the password digest. However, SSL
certificates can expire or they may be revoked if the private key is leaked. In
such cases, modssl-hmac must recover the stored passwords, otherwise users will
be locked out of the web app. This is clearly a weakness of modssl-hmac. Notice,
that such recovering should be used only when an SSL certificate is updated and
the key is refreshed. Certificates can be renewed, without changing the keys used;
frequently updating the keys can interfere with SSL pinning, while we are not
aware of any study that suggests that refreshing the keys often makes the system
more secure.

Nevertheless, modssl-hmac can be augmented with a slightly different pro-
tocol, that involves implicitly the private key, rather than explicitly, as it is
presented so far in the paper. In the augmented protocol, modssl-hmac selects
a random master key, κ, upon initialization. Now, all computed HMACs are
based on κ and not on the private key, i.e., for a password p, the server stores
HMAC(p, κ).

The master key, κ, must be strongly protected. So far, modssl-hmac builds
on the fact that the private key involved in HMAC computations is kept secure.

Forcing the web app to keep, additionally, κ secure is not realistic, and we assume
that κ can be eventually leaked. However, we can easily bind κ to the private
key, so that revealing κ can be done only if the private key is leaked.

For this, modssl-hmac encrypts κ using Kpub, the public key used for TLS,
produces EKpub

(κ), and deletes κ. Therefore, the web app stores HMACs of
passwords and EKpub

(κ), but not κ in plain. For all HMAC computations κ
must be revealed, which is only possible with the use of the private key, since
κ is kept only as EKpub

(κ). Upon a certificate renewal/revocation, κ must be
migrated to the new public-key pair. This involves decrypting κ with the old
private key and, subsequently, encrypting it with the new public key. As we
stressed above, this is a more complicated system, which we plan to explore in
our future work.

CDNs. Finally, when a Content Delivery Network (CDN) is used to accelerate
web communication, a web app may be accessed using different CDN nodes.
These CDN nodes may have different private keys, therefore, it is questionable
which private key will be used for computing HMACs. This is, again, a weakness
of modssl-hmac. Similarly to SSL renewal/revocation, the augmented protocol
we discussed above could be used. Each CDN node needs only access to the
master key, κ, which can keep encrypted with its public key. Upon any HMAC
computation, each CDN node can reveal κ using its private key. Again, this is a
more complicated system, which we plan to explore in our future work.

6 Related Work

The first known attempt for hardening passwords using a cryptographic service
has been deployed by Facebook [11]. Since then, researchers have created much
more elaborate services for password hardening. We review in detail all of them.

Pythia Pythia [19] is based on pseudorandom functions (PRF), which can
make offline password-cracking harder; for instance, if HMAC is used as a PRF
the attacker needs access to the internal key used in the HMAC computation.
A PRF is unlikely to protect passwords if the service is compromised or the
implementation of the PRF, itself, is weak. In such cases, the secret key used on
PRF can be made available to the attacker and cracking hardened passwords is,
again, possible. Pythia has 3 main processes. During Ensemble Initialization, the
server picks a selector w (ideally unguessable random byte string). The service
creates a random table entry K[w]. During PRF Evaluation, the server sends the
hashed password accompanied with a tweak (e.g., salt, username). The ensemble
key is equal to HMAC(msk,K[w]), where msk is the master secret key of the
service. The service uses the ensemble key to create the PRF value. The server
verifies that the PRF value was produced by the service. Finally, the PRF value
is stored on the server’s database or it is used to validate a user authentication.
Finally, there is Ensemble-key Reset, where, in case of data leakage or regular

routine, the server can reset the ensemble key. The table entry (K[w]) is replaced
with a new one and an updated token is created. With the use of the updated
token the server refreshes all PRFs so that they can be validated with the new
table entry. This procedure makes the old data useless. Also, the service can
reset msk to a new one and update each K[w] accordingly.

Phoenix and Partially Oblivious Commitments As a follow-up to Pythia,
partially oblivious commitments (PO-COM) were proposed by Schneider [31].
Later on, Phoenix [27] showed that the aforementioned scheme is vulnerable to
offline attacks. Here is how Phoenix works. During the Setup Phase, a private
key is created by the server, and a private and public-key pair is created by the
service. Then there is the Enrolment Phase, where the server and the service
work cooperatively to create an enrolment record. Both the server and service
pick a random nonce. The service creates a PRF value based on its nonce, the
username and service’s private key, while the server creates a PRF value based
on the server’s nonce, the username, the password and server’s private key. The
server creates an enrolment record consisting of the nonces and the two PRFs
encrypted. Subsequently, there is the Validation Phase, where server and service
work to validate that a password is correct. The server uses its PRF value to
decrypt some of the data on the enrolment record and sends it to the service.
The service checks if the data received is valid for the particular username and
transmits the result back. If the result of the validation is positive, then the
server provides access to the user. Finally, there is a Rotation phase. The server
requests from the service to initiate the rotation phase and the service creates
new private and public keys. The server changes its private key according to the
response of the service and updates the enrolment records.

Pythia, PO-COM, and Phoenix are all based on elaborate cryptography for
deploying services for hardening passwords. In contrast, modssl-hmac follows
a simpler approach for hardening passwords, without the need of an external
service.

Password Hardened Encryption PHE [26] proposes the use of password
hardening schemes not only to authenticate a user, but also for symmetric en-
cryption. During Encryption Phase, the server creates a random symmetric key
M . The server and the service work cooperatively to create an enrolment record
(that encrypts M). The server stores the enrolment record paired with the user-
name in the database, and then deletes M . During Decryption Phase, the server
and the service work cooperatively to validate that the password provided by
the user is correct by decrypting M . The server uses M to decrypt or encrypt
sensitive user data and then deletes M . Unlike PHE, modssl-hmac focus only
on hardening leaked credentials and not on deriving additional secrets.

PAKE Finally, Password Authenticated Key Exchange (PAKE) [14, 13, 35] can
utilize cryptographic protocols, which involve keys generated from passwords.

Many of these protocols allow clients to prove that they know passwords, with-
out revealing them to servers. Instead, the server stores credentials that embed
somehow information about the password, and not the password itself. There-
fore, these systems focus on a different problem, namely how to authenticate to
servers without ever revealing the password to them. Nevertheless, it is interest-
ing to explore how modssl-hmac can harden PAKE-based credentials, which are
not based on cryptographic hash functions. We plan to investigate this in our
future work.

7 Conclusion

In this paper, we harden Internet services against intrusions that seek to ex-
filtrate the users’ passwords. We proposed modssl-hmac, which uses existing
cryptographic services appearing in any web server that supports TLS connec-
tions. modssl-hmac does not use cryptographic hashing for storing passwords,
but rather an HMAC, which involves using the TLS private key of the web server.
With modssl-hmac in place, cracking of leaked passwords is only possible if the
TLS private key of the web server is also leaked.

Open Source modssl-hmac and all the relevant modules for WordPress and
Drupal are open source: https://bitbucket.org/srecgrp/modssl-hmac-public/

Acknowledgements We thank the anonymous reviewers and Jelena Mirkovic
for helping us to improve the final version of this paper. This work was supported
by the European Union’s Horizon 2020 research and innovation programme un-
der grant agreements No. 786669 (ReAct), No. 830929 (CyberSec4Europe), and
No. 826278 (SERUMS), and by the RESTART programmes of the research, tech-
nological development and innovation of the Research Promotion Foundation,
under grant agreement ENTERPRISES/0916/0063 (PERSONAS).

References

1. Bible references make very weak passwords.
https://boingboing.net/2017/01/07/bible-references-make-very-wea.html. Ac-
cessed in January 2019.

2. Drupal - Open Source CMS. https://www.drupal.org. Accessed in January 2019.
3. Hacker Posts 6.4 Million LinkedIn Passwords.

http://www.technewsdaily.com/7839-linked-passwords-hack.html.
4. mod ssl: The Apache Interface to OpenSSL. http://www.modssl.org. Accessed in

January 2019.
5. Online hash crack. https://www.onlinehashcrack.com. Accessed in January 2019.
6. Plain text offenders. http://plaintextoffenders.com. Accessed in January 2019.
7. Protecting basecamp from breached passwords.

https://m.signalvnoise.com/protecting-basecamp-from-breached-passwords/.
Accessed in February 2019.

8. Sony Hacked Again, 1 Million Passwords Exposed.
http://www.informationweek.com/security/attacks/sony-hacked-again-1-million-
passwords-ex/229900111.

9. Twitter detects and shuts down password data hack in progress.
http://arstechnica.com/security/2013/02/twitter-detects-and-shuts-down-
password- data-hack-in-progress/.

10. WordPress - Create a website in minutes. https://wordpress.com. Accessed in
January 2019.

11. Allex Muffet. Facebook: Password hashing and authentication.
https://video.adm.ntnu.no/pres/54b660049af94. Accessed in January 2019.

12. J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro. Scrypt is maximally
memory-hard. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 33–62. Springer, 2017.

13. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In International conference on the theory and applica-
tions of cryptographic techniques, pages 139–155. Springer, 2000.

14. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In Proceedings 1992 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 72–84. IEEE, 1992.

15. W. E. Burr, D. F. Dodson, W. T. Polk, et al. Electronic authentication guideline.
Commonly known as: Draft NIST Special Publication 800-63-2. 2004.

16. A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The tangled web of pass-
word reuse. In 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014, 2014.

17. R. Dhamija, J. Tygar, and M. Hearst. Why phishing works. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, SIGCHI, 2006.

18. T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2.
Technical report, 2008.

19. A. Everspaugh, R. Chaterjee, S. Scott, A. Juels, and T. Ristenpart. The pythia
PRF service. In 24th USENIX Security Symposium (USENIX Security 15), pages
547–562, Washington, D.C., 2015. USENIX Association.

20. S. Gaw and E. W. Felten. Password management strategies for online accounts.
In Proceedings of the Symposium on Usable Privacy and Security, SOUPS, 2006.

21. N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan. The password reset mitm
attack. In 2017 IEEE Symposium on Security and Privacy (SP), volume 00, pages
251–267, May 2017.

22. K. Hill. Google says not to worry about 5 million gmail passwords
leaked. http://www.forbes.com/sites/kashmirhill/2014/09/11/google-says-not-to-
worry-about-5-million-gmail-passwords-leaked/.

23. N. Karapanos and S. Capkun. On the effective prevention of tls man-in-the-middle
attacks in web applications. In USENIX security symposium, volume 23, pages
671–686, 2014.

24. G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and A. D. Keromytis. Sauth:
Protecting user accounts from password database leaks. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security, CCS ’13,
pages 187–198, New York, NY, USA, 2013. ACM.

25. H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for message au-
thentication. Technical report, 1997.

26. R. W. F. Lai, C. Egger, M. Reinert, S. S. M. Chow, M. Maffei, and D. Schröder.
Simple password-hardened encryption services. In 27th USENIX Security Sym-

posium (USENIX Security 18), pages 1405–1421, Baltimore, MD, 2018. USENIX
Association.

27. R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow. Phoenix: Rebirth of a
cryptographic password-hardening service. In 26th USENIX Security Symposium
(USENIX Security 17), pages 899–916, Vancouver, BC, 2017. USENIX Association.

28. U. D. of Commerce, N. I. of Standards, and Technology. Secure Hash Standard
- SHS: Federal Information Processing Standards Publication 180-4. CreateSpace
Independent Publishing Platform, USA, 2012.

29. N. Provos and D. Mazieres. A future-adaptable password scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91, 1999.

30. R. Rivest. The md5 message-digest algorithm. Technical report, 1992.
31. J. Schneider, N. Fleischhacker, D. Schröder, and M. Backes. Efficient cryptographic

password hardening services from partially oblivious commitments. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 1192–1203, New York, NY, USA, 2016. ACM.

32. B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek, T. Passaro,
R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor. How does your password
measure up? the effect of strength meters on password creation. In Proceedings
of the 21st USENIX Conference on Security Symposium, Security’12, pages 5–5,
Berkeley, CA, USA, 2012. USENIX Association.

33. L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. re-
captcha: Human-based character recognition via web security measures. Science,
321(5895):1465–1468, 2008.

34. X. Wang and H. Yu. How to break md5 and other hash functions. In Annual
international conference on the theory and applications of cryptographic techniques,
pages 19–35. Springer, 2005.

35. T. D. Wu et al. The secure remote password protocol. In NDSS, volume 98, pages
97–111. Citeseer, 1998.

Appendix A

1 i n t hasher hand le r (r e qu e s t r e c ∗ r) {
2 i f (strcmp (r−>ur i , ”/hmac−s e r v i c e ”)==0 && r−>args !=NULL &&
3 strcmp (ap ge t r emote hos t (r−>connect ion , NULL,
4 REMOTENAME, NULL) ,
5 ” 1 2 7 . 0 . 0 . 1 ”)==0) {
6 char ∗ key ; s e r v e r r e c ∗ s = r−>s e r v e r ;
7 SSLSrvConfigRec ∗ sc = mySrvConfig (s) ;
8 mods s l c tx t ∗ s e r v e r = sc−>s e r v e r ;
9 i f (s e r v e r == NULL | | se rver−>s s l c t x == NULL)

10 re turn DECLINED;
11 e l s e {
12 EVP PKEY ∗ evp = SSL CTX get0 privatekey (se rver−>s s l c t x) ;
13 i f (evp) {
14 s i z e t l en = PRIVATE KEY SIZE ; key = malloc (l en) ;
15 FILE ∗ s t r i n gF i l e = fmemopen (key , len , ”w”) ;
16 PEM write PrivateKey (s t r i n gF i l e , evp , NULL,
17 NULL, 0 , 0 , NULL) ;
18 f c l o s e (s t r i n gF i l e) ;
19 } e l s e re turn DECLINED;
20 }
21 char ∗ plainPassword = getPasswordFromArgs (r−>args) ;
22 i n t rounds = getRoundsFromArgs (r−>args) ;
23 // wrong password format
24 char ∗ dec=malloc (s i z e o f (char)∗ s t r l e n (plainPassword)+1) ;
25 i f (plainPassword==NULL | | decode (plainPassword , dec)<0){
26 f r e e (dec) ; f r e e (key) ;
27 re turn DECLINED;
28 }
29 i n t r l en , i ;
30 unsigned char ∗ hashed = HMAC(EVP sha256 () ,
31 key , s t r l e n (key) ,
32 dec , s t r l e n (dec) , NULL, &r l en) ;
33 f o r (i =1; i<rounds ; i++)
34 h = HMAC(EVP sha256 () , key , s t r l e n (key) , h , r l en , NULL, &r l en) ;
35 f o r (i = 0 ; i < r l e n ; i++) {
36 ap r p r i n t f (r , ”%02X” , h [i]) ;
37 }
38 f r e e (key) ; f r e e (dec) ; f r e e (plainPassword) ;
39 re turn OK;
40 }
41 re turn DECLINED;
42 }

Fig. 6. Implementation of modssl-hmac as an Apache module

