
RIDL: Rogue In-Flight Data Load

Stephan van Schaik∗, Alyssa Milburn∗, Sebastian Österlund∗, Pietro Frigo∗, Giorgi Maisuradze†‡,
Kaveh Razavi∗, Herbert Bos∗, and Cristiano Giuffrida∗

∗Department of Computer Science
Vrije Universiteit Amsterdam, The Netherlands

{s.j.r.van.schaik, a.a.milburn, s.osterlund, p.frigo}@vu.nl,
{kaveh, herbertb, giuffrida}@cs.vu.nl

†CISPA Helmholtz Center for Information Security
Saarland Informatics Campus

giorgi.maisuradze@cispa.saarland

Abstract—We present Rogue In-flight Data Load
(RIDL)1, a new class of unprivileged speculative execu-
tion attacks to leak arbitrary data across address spaces
and privilege boundaries (e.g., process, kernel, SGX,
and even CPU-internal operations). Our reverse engi-
neering efforts show such vulnerabilities originate from
a variety of micro-optimizations pervasive in commod-
ity (Intel) processors, which cause the CPU to spec-
ulatively serve loads using extraneous CPU-internal
in-flight data (e.g., in the line fill buffers). Contrary
to other state-of-the-art speculative execution attacks,
such as Spectre, Meltdown and Foreshadow, RIDL can
leak this arbitrary in-flight data with no assumptions
on the state of the caches or translation data structures
controlled by privileged software.

The implications are worrisome. First, RIDL attacks
can be implemented even from linear execution with
no invalid page faults, eliminating the need for excep-
tion suppression mechanisms and enabling system-wide
attacks from arbitrary unprivileged code (including
JavaScript in the browser). To exemplify such attacks,
we build a number of practical exploits that leak
sensitive information from victim processes, virtual
machines, kernel, SGX and CPU-internal components.
Second, and perhaps more importantly, RIDL bypasses
all existing “spot” mitigations in software (e.g., KPTI,
PTE inversion) and hardware (e.g., speculative store
bypass disable) and cannot easily be mitigated even
by more heavyweight defenses (e.g., L1D flushing or
disabling SMT). RIDL questions the sustainability of a
per-variant, spot mitigation strategy and suggests more
fundamental mitigations are needed to contain ever-
emerging speculative execution attacks.

I. Introduction
Since the original Meltdown and Spectre disclosure, the

family of memory disclosure attacks abusing speculative
execution 2 has grown steadily [1], [2], [3], [4], [5]. While
these attacks can leak sensitive information across secu-
rity boundaries, they are all subject to strict addressing
restrictions. In particular, Spectre variants [2], [4], [5] allow
attacker-controlled code to only leak within the loaded
virtual address space. Meltdown [1] and Foreshadow [3]
require the target physical address to at least appear in

‡Work started during internship at Microsoft Research.
1Or “Microarchitectural Data Sampling” (MDS), as Intel calls the

RIDL class of vulnerabilities.
2Unless otherwise noted, we loosely refer to both speculative and

out-of-order execution as speculative execution in this paper.

the loaded address translation data structures. Such re-
strictions have exposed convenient anchor points to deploy
practical “spot” mitigations against existing attacks [6],
[7], [8], [9]. This shaped the common perception that—
until in-silicon mitigations are available on the next gener-
ation of hardware—per-variant, software-only mitigations
are a relatively pain-free strategy to contain ever-emerging
memory disclosure attacks based on speculative execution.

In this paper, we challenge the common perception by
introducing Rogue In-flight Data Load (RIDL)1, a new
class of speculative execution attacks that lifts all such ad-
dressing restrictions entirely. While existing attacks target
information at specific addresses, RIDL operates akin to a
passive sniffer that eavesdrops on in-flight data (e.g., data
in the line fill buffers3) flowing through CPU components.
RIDL is powerful: it can leak information across address
space and privilege boundaries by solely abusing micro-
optimizations implemented in commodity Intel processors.
Unlike existing attacks, RIDL is non-trivial to stop with
practical mitigations in software.

The vulnerability of existing vulnerabilities. To il-
lustrate how existing speculative execution vulnerabilities
are subject to addressing restrictions and how this provides
defenders convenient anchor points for “spot” software
mitigations, we consider their most prominent examples.

Spectre [2] allows attackers to manipulate the state
of the branch prediction unit and abuse the mispredicted
branch to leak arbitrary data within the accessible address
space via a side channel (e.g., cache). This primitive by
itself is useful in sandbox (e.g., JavaScript) escape scenar-
ios, but needs to resort to confused-deputy attacks [10]
to implement cross-address space (e.g., kernel) memory
disclosure. In such attacks, the attacker needs to lure
the victim component into speculatively executing specific
“gadgets”, disclosing data from the victim address space
back to the attacker. This requirement opened the door
to a number of practical software mitigations, ranging
from halting speculation when accessing untrusted point-
ers or indices [7] to not speculating across vulnerable
branches [6].

Meltdown [1] somewhat loosens the restrictions of the
addresses reachable from attacker-controlled code. Rather

3We primarily focus on fill buffers in the paper. See Appendix A for
information about other sources, such as load ports and store buffers.

than restricting the code to valid addresses, an unpriv-
ileged attacker can also access privileged address space
mappings that are normally made inaccessible by the
supervisor bit in the translation data structures. The
reason is that, while any access to a privileged address
will eventually trigger an error condition (i.e., invalid
page fault), before properly handling it, the CPU already
exposes the privileged data to out-of-order execution, al-
lowing disclosure. This enables cross-address space (user-
to-kernel) attacks, but only in a traditional user/kernel
unified address space design. This requirement opened the
door to practical software mitigations such as KPTI [9],
where the operating system (OS) isolates the kernel in its
own address space rather than relying on the supervisor
bit for isolation.

Foreshadow [3] further loosens the addressing restric-
tions. Rather than restricting attacker-controlled code to
valid and privileged addresses, the attacker can also access
physical addresses mapped by invalid (e.g., non-present)
translation data structure entries. Similar to Meltdown,
the target physical address is accessed via the cache,
data is then passed to out-of-order execution, and subse-
quently leaked before the corresponding invalid page fault
is detected. Unlike Meltdown, given the milder addressing
restrictions, Foreshadow enables arbitrary cross-address
space attacks. But this is only possible when the attacker
can surgically control the physical address of some invalid
translation structure entry. This requirement opened the
door to practical software mitigations such as PTE inver-
sion [8], where the OS simply masks the physical address
of any invalidated translation structure entry.

A new RIDL. With RIDL, we show our faith in practi-
cal, “spot” mitigations being able to address known and
future speculative execution attacks was misplaced. As
we shall see, RIDL can leak in-flight data of a victim
process even if that process is not speculating (e.g., due to
Spectre mitigations) and it does not require control over
address translation data structures at all. These properties
remove all the assumptions that spot mitigations rely on.
Translation data structures, specifically, enforce basic secu-
rity mechanisms such as isolation, access permissions and
privileges. Relaxing the requirement on translation data
structures allows RIDL to mount powerful cross-address
space speculative execution attacks directly from error-free
and branchless unprivileged execution for the first time.
In particular, by snooping on in-flight data in the CPU,
attackers running arbitrary unprivileged code (including
JavaScript in the browser) may leak information across
arbitrary security boundaries. In essence, RIDL puts a
glass to the wall that separates security domains, allowing
attackers to listen to the babbling of CPU components.

To investigate the root cause of the RIDL class of
vulnerabilities, we report on our reverse engineering efforts
on several recent Intel microarchitectures. We show RIDL
stems from micro-optimizations that cause the CPU to
serve speculative loads with extraneous CPU-internal in-
flight data. In the paper, we focus our analysis on instances
serving arbitrary, address-agnostic data from the Line
Fill Buffers (LFBs), which we found to be exploitable
in the practical cases of interest. We also report on the

challenges to exploit RIDL in practice, targeting specific
in-flight data to leak in particular. Moreover, we present
a number of practical exploits that leak data across many
common security boundaries (JavaScript sandbox, process,
kernel, VM, SGX, etc.). We show exploitation is possible
in both cross-thread and same-thread (no SMT) scenarios.
This applies to all the existing Intel systems with the
latest (microcode) updates and all the defenses up. In
particular, RIDL bypasses all the practical mitigations
against existing attacks and even the more heavyweight,
default-off mitigations such as periodic L1 flushing. The
lesson learned is that mitigating RIDL-like attacks with
practical software mitigations is non-trivial and we need
more fundamental mitigations to end the speculative exe-
cution attacks era.

Contributions. We make the following contributions:

• We present RIDL, a new class of speculative exe-
cution vulnerabilities pervasive in commodity Intel
CPUs. RIDL enables unprivileged attackers to craft
address-agnostic memory disclosure primitives across
arbitrary security boundaries for the first time and
has been rewarded by the Intel Bug Bounty Program.

• We investigate the root cause of our primary RIDL
variant abusing Line Fill Buffers (LFBs), presenting
the first reverse engineering effort to analyze LFB
behavior and related micro-optimizations.

• We present a number of real-world exploits that
demonstrate an unprivileged RIDL-enabled attacker
can leak data across arbitrary security boundaries,
including process, kernel, VM and SGX, even with
all mitigations against existing attacks enabled. For
example, we can leak the contents of the /etc/shadow
in another VM using a RIDL attack. More information
and demos of our RIDL exploits can be found at
https://mdsattacks.com.

• We place RIDL in the context of state-of-the-art at-
tacks and mitigation efforts. Our analysis shows that,
unlike existing attacks, RIDL is ill-suited to practical
mitigations in software and more fundamental miti-
gations are necessary moving forward.

II. Background

Figure 1 shows an overview of the Intel Skylake mi-
croarchitecture. It consists of three stages: 1 an in-order
front-end that decodes instructions into µ-ops, 2 an out-
-of-order execution engine, 3 and the memory pipeline.
Since the Intel Skylake microarchitecture is quite com-
plex, we specifically focus on the cache hierarchy, out-of-
order/speculative execution, and in-flight data.

A. Caches

To overcome the growing performance gap between pro-
cessors and memory, the processor contains small memory
buffers, called caches, to store frequently and recently used
data to hide memory latency. Modern processors have
multiple levels of caches with the smallest and fastest
close to the processor, and the largest but slowest being
the furthest away from the processor. The Intel Core
microarchitecture has three levels of CPU caches. At the

https://mdsattacks.com

Branch
Prediction

Unit

L1i
Cache

Instruction
µOP

Cache Tags

Register
Allocation & Renaming

Physical
Register File

Integer
Registers

Vector
Registers

Branch Order Buffer
Re-order Buffer

Execution Units

L2 Cache

L1d
Cache

Line Fill
Buffer

Store Buffer

Retirement Unit

Load Buffer

L1i TLB

L1d TLB
L2 TLB

Memory Pipeline

Out-of-Order Engine

Register
Alias Table

Return Stack
Buffer
Branch

Target Buffer

Front-end1

3

2

INT ALUport 0

LOAD

LOAD

STORE

AGU

INT ALU

INT ALU

INT ALU

µO
P Scheduler

U
nified Reservation Station

port 2

port 3

port 4

port 7

port 6

port 5

port 1

Common Data Bus

Fig. 1: An overview of the Intel Skylake microarchitecture.

first level, there are two caches, L1i and L1d, to store
code and data respectively, while the L2 cache unifies code
and data. Where these caches are private to each core, all
cores share the L3 or last-level cache (LLC). The LLC is
inclusive of the lower-level caches and set-associative, i.e.,
divided into multiple cache sets where part of the physical
address is used to index into the corresponding cache set.

Gullasch et al. [11] use clflush to evict targets to mon-
itor from the cache. By measuring the time to reload them
the attacker determines whether the victim has accessed
them—a class of attacks called Flush + Reload [12].
Another variant is Prime + Probe [13], [14], [15], [16],
in which the attacker builds an eviction set of memory ad-
dresses to fill a specific cache set. By repeatedly measuring
the time it takes to refill the cache set, the attacker can
monitor memory accesses to that cache set.

B. Out-of-Order Execution
To improve the instruction throughput, modern CPUs

implement a superscalar out-of-order execution pipeline
similar to Tomasulo’s algorithm [17], [18]. Out-of-order
execution engines generally consist of three stages: 1 in-
-order register allocation & renaming, 2 out-of-order exe-
cution of instructions or µ-ops, 3 and in-order retirement.

a) Register renaming: Once the decoded µ-ops leave
the front-end, they pass through the register allocation
& renaming unit that renames the registers to eliminate
Write-after-Read (WAR) and Write-after-Write (WAW)
hazards. More specifically, this unit renames source/desti-
nation operands for µ-ops by allocating pointers to freely
available physical registers from the Physical Register File
(PRF) and maintaining the corresponding mappings in the
Register Alias Table (RAT). After renaming the µ-op, the
unit allocates an entry for the µ-op in the Re-Order Buffer
(ROB) to preserve the original programming order and
sends the µ-op to the reservation station.

b) Out-of-order scheduling: To eliminate Read-after-
Write (RAW) hazards, the reservation station stalls each
µ-op with unavailable operands. Once all the operands

are available, the scheduler dispatches the µ-op to the
corresponding execution unit, possibly before scheduling
older µ-ops. After executing the µ-op, the reservation
station stores its result, updates the µ-ops that depend on
it, and marks the corresponding ROB entry as completed.

c) Retirement: The Retirement Unit retires com-
pleted µ-ops in their original program order by committing
the architectural state for memory/branch operations and
freeing up any allocated physical registers. In case of
a mispredicted branch, the Retirement Unit retires the
offending branch instruction, flushes the ROB, resets the
reservation station, and replays the execution stream from
the correct branch. The Retirement Unit also detects faulty
instructions and generates precise exceptions once the
offending µ-op reaches a non-speculative state.

C. Speculative Execution
To predict the target of a branch, modern proces-

sors feature a Branch Prediction Unit (BPU). The BPU
predicts the branch target such that the processor can
execute a stream of instructions speculatively. In case the
predicted path is wrong, the processor reverts the state to
the last known useful state and starts executing from the
correct branch instead. There are several instances where
speculation occurs, such as: conditional branches, indirect
branches and calls, return instructions and transactions.

Recent Intel processors employ a Branch Order Buffer
(BOB) to keep track of all in-flight branches and whether
the branch is in retired or speculative state [19], [20].
The BOB is also used to implement memory transactions
through Transactional Synchronization eXtensions (TSX).
In particular, the xbegin instruction marks the start of a
transaction and adds an entry to the BOB as a checkpoint.
Transactions end once the processor encounters an xend
instruction, an xabort instruction, or a fault. In case of
an xend instruction, the processor commits the transac-
tion, otherwise the processor rolls back the transaction by
reverting back to the original state before the xbegin.

D. In-flight Data
There are many potential sources of in-flight data in

modern CPUs such as the Re-Order Buffer (ROB), execu-
tion ports (e.g., load ports), Load and Store Buffers (LBs
and SBs) [21], [22], [23], [24], Line Fill Buffers (LFBs),
and the Super Queue (SQ) [25], [26]. We focus here on two
prominent examples: store buffers and line fill buffers.

Store Buffers (SBs) are internal buffers used to track
pending stores and in-flight data involved in optimizations
such as store-to-load forwarding [21], [24]. Some modern
processors enforce a strong memory ordering, where load
and store instructions that refer to the same physical
address cannot be executed out-of-order. However, as ad-
dress translation is a slow process, the physical address
might not be available yet, and the processor performs
memory disambiguation to predict whether load and store
instructions refer to the same physical address [27]. This
enables the processor to speculatively execute unambigu-
ous load and store instructions out-of-order. As a micro-
optimization, if the load and store instructions are ambigu-

ous, the processor can speculatively store-to-load forward
the data from the store buffer to the load buffer.

Line Fill Buffers (LFBs) are internal buffers that the
CPU uses to keep track of outstanding memory requests
and perform a number of optimizations such as merging
multiple in-flight stores. Sometimes, data may already be
available in the LFBs and, as a micro-optimization, the
CPU can speculatively load this data (similar optimiza-
tions are also performed on e.g. store buffers). In both
cases, modern CPUs that implement aggressive speculative
execution may speculate without any awareness of the
virtual or physical addresses involved. In this paper, we
specifically focus on LFBs, which we found particularly
amenable to practical, real-world RIDL exploitation.

III. Threat Model

We consider an attacker who wants to abuse speculative
execution vulnerabilities to disclose some confidential in-
formation, such as private keys, passwords, or randomized
pointers. We assume a victim Intel-based system running
the latest microcode and OS version, with all the state-of-
the-art mitigations against speculative execution attacks
enabled. We also assume the victim system is protected
against other classes of (e.g., software) vulnerabilities.
Finally, we assume the attacker can only run unprivileged
code on the victim system (e.g., JavaScript sandbox, user
process, VM, or SGX enclave), but seeks to leak informa-
tion across arbitrary privilege levels and address spaces.

IV. Overview

Figure 2 illustrates the main steps and the underlying
mechanism enabling the RIDL leaks. First, as part of its
normal execution, the victim code, in another security
domain, loads or stores some secret data4. Internally,
the CPU performs the load or store via some internal
buffers—for example, Line Fill Buffers (LFBs). Then,
when the attacker also performs a load, the processor
speculatively uses in-flight data from the LFBs (with no
addressing restrictions) rather than valid data. Finally, by
using the speculatively loaded data as an index into a
Flush + Reload buffer (or any other covert channel),
attackers can extract the secret value.

Victim Process

Attacker Process

Secret

Load/Store Line Fill Buffer Speculative
Load

Secret

Dependent
Load

FLUSH + RELOAD
Buffer

Fig. 2: An overview of a RIDL-class attack.

4Strictly speaking, this is not even a hard requirement, as we can
also leak data from inactive code by forcing cache evictions.

A simple example of our attack is shown in Listing 1.
As shown in the listing, the code is normal, straight-line
code without invalid accesses (or, indeed, error suppres-
sion), which, as we will show, can also be implemented
in managed languages such as JavaScript. Lines 2–3 only
flush the buffer that we will later use in our covert channel
to leak the secret that we speculatively access in Line 6.
Specifically, when executing Line 6, the CPU speculatively
loads a value from memory in the hope it is from our newly
allocated page, while really it is in-flight data from the
LFBs belonging to an arbitrarily different security domain.

1 /* Flush flush & reload buffer entries. */
2 for (k = 0; k < 256; ++k)
3 flush(buffer + k * 1024);
4

5 /* Speculatively load the secret. */
6 char value = *(new_page);
7 /* Calculate the corresponding entry. */
8 char *entry_ptr = buffer + (1024 * value);
9 /* Load that entry into the cache. */

10 *(entry_ptr);
11

12 /* Time the reload of each buffer entry to
13 see which entry is now cached. */
14 for (k = 0; k < 256; ++k) {
15 t0 = cycles();
16 *(buffer + 1024 * k);
17 dt = cycles() - t0;
18

19 if (dt < 100)
20 ++results[k];
21 }

Listing 1: An example of RIDL leaking in-flight data.

When the processor eventually detects the incorrect
speculative load, it will discard any and all modifica-
tions to registers or memory, and restart execution at
Line 6 with the right value. However, since traces of
the speculatively executed load still exist at the micro-
architectural level (in the form of the corresponding cache
line), we can observe the leaked in-flight data using a
simple (Flush + Reload) covert channel—no different
from that of other speculative execution attacks. In fact,
the rest of the code snippet is all about the covert channel.
Lines 8-10 speculatively access one of the entries in the
buffer, using the leaked in-flight data as an index. As
a result, the corresponding cache line will be present.
Lines 12-21 then access all the entries in our buffer to see
if any of them are significantly faster (indicating that the
cache line is present)—the index of which will correspond
to the leaked information. Specifically, we may expect two
accesses to be fast, not just the one corresponding to the
leaked information. After all, when the processor discovers
its mistake and restarts at Line 6 with the right value, the
program will also access the buffer with this index.

Our example above use demand paging for the loaded
address, so the CPU restarts the execution only after
handling the page-in event and bringing in a newly mapped
page. Note that this is not an error condition, but rather
a normal part of the OS’ paging functionality. We found

many other ways to speculatively execute code using in-
flight data. In fact, the accessed address is not at all
important. As an extreme example, rather than accessing a
newly mapped page, Line 6 could even dereference a NULL
pointer and later suppress the error (e.g., using TSX). In
general, any run-time exception seems to be sufficient to
induce RIDL leaks, presumably because the processor can
more aggressively speculate on loads in case of exceptions.
Clearly, one can only “speculate” here, but this behav-
ior seems consistent with existing vulnerabilities [1], [3].
Similarly, we noticed the address accessed by the attacker
should be part of a page-aligned cache line to induce leaks.

While the basic concept behind in-flight data may be
intuitive, successfully implementing an attack turned out
to be challenging. Unlike prior work that builds on well-
documented functionality such as branch prediction, page
tables and caches, the behavior of internal CPU buffers
such as LFBs is largely unknown. Moreover, different
microarchitectures feature different types of buffers with
varying behavior. Furthermore, based on publicly available
documentation, it was not clear whether many of these
buffers even exist. For our attack to succeed, we had to
resort to extensive reverse engineering to gain a better
understanding of these buffers and their interaction with
the processor pipeline. The next section discusses how we
determine exactly which in-flight data buffers are respon-
sible for the leak, how to manipulate the processor state
in such a way that we can perform a speculative load
that uses the in-flight data (so that we can use our covert
channel to obtain the content), and how to ensure the data
we want to leak actually ends up in the buffers.

V. Line fill buffers and how to use them

To perform the attack described in the previous section,
we first need to understand the core building blocks for
the RIDL variant we focused on in this paper: the Line
Fill Buffers (LFBs). Using reverse engineering and experi-
mentation, we verify that our primary variant does indeed
leak from the LFBs and examine their interaction with the
processor pipeline. After that, we discuss how attackers can
control what to leak by synchronizing with the victim.

In Intel processors, the LFB performs multiple roles: it
enables non-blocking caches, buffers non-temporal memory
traffic [28], [29], [30], [31], and performs both load squash-
ing [32], [33], [34] and write combining [35], [36], [37]. To
help the reader understand the remainder of this paper,
we now briefly discuss each of these functions.

Non-blocking cache. Cache misses have a serious im-
pact on performance as they block the data cache until
the data is available. To allow non-blocking reads, the
LFB implements multiple Miss Status Holding Registers
(MSHRs) to track the physical addresses of outstanding
requests until the data is available [38], [39]. For example,
the Haswell microarchitecture maintains 10 L1 MSHRs
in its LFB to service outstanding L1 cache misses [40],
[41] These MSHRs free up the L1d cache to allow load
instructions that hit the L1d cache to bypass cache misses.

Load squashing. To further optimize performance, the
LFB squashes multiple load misses to the same physical

address. If there is already an outstanding request in the
LFB with the same physical address, the processor assigns
the same LFB entry to a load/store with the same address.

Write combining. For weakly-ordered memory, the pro-
cessor keeps stores to the same cache line within the LFB
to perform write combining. That is, the processor merges
multiple stores in a single LFB entry before writing out
the final result through the memory hierarchy.

Non-temporal requests. Finally, modern processors
support non-temporal memory traffic where the program-
mer already knows that caching the data is of no benefit
at all. In that case, the processor performs non-temporal
loads and stores exclusively through the LFB.

A. Solving a RIDL: LFB leaks on loads and stores

Unaware of the source of our initial RIDL leaks, we
discovered that they originate from the LFBs, rather
than from other processor state, by conducting several
experiments on a workstation featuring an Intel Core
i7-7700K (Kaby Lake). For our experiments, we use a
kernel module to mark memory pages in our victim thread
as write-back (WB), write-through (WT), write-combine
(WC) and uncacheable (UC) [42], [43]. We use Intel TSX
to implement the attack for our analysis and perform
10, 000 rounds to leak the data during every run of the
experiment. Furthermore, we run every experiment 100
times and report the average.

cross thread
0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

SMT

no victim same thread

No SMT
hit_lfb
zeros
real value
same-thread
cross-thread

Fig. 3: In each pair of bars, one bar shows the LFB hit count,
and the other one the number of attacks. With SMT, we always
leak the secret. Without SMT and no victim code, RIDL only
reads zeros, but with victim and attacker in the same hardware
thread, we still leak the secret in most cases (top/red bar), while
occasionally finding the value the CPU should have loaded.

Our first experiment performs the attack discussed ear-
lier against a victim running in the same or other hardware
thread and repeatedly storing a secret to a fixed memory
address. We then compare the number of hits in the LFB,
measured using the lfb_hit performance counter, to the
number of attack iterations. Consider the left-most (SMT)
plot of Figure 3 which shows close correspondence between
the number of LFB hits and the number of attempts for
leaking (and correctly obtain the secret). This strongly
suggests that the source of these leaks is the LFB.

In our second experiment, a victim thread initially
writes a known value A to a fixed memory address, and
then reads it back in a loop where each read is followed

rea
d (

WB)

rea
d (

WT)

rea
d (

WC)

rea
d (

UC)

flu
sh

(W
B)

flu
sh

(W
T)

flu
sh

(W
C)

flu
sh

(UC)

10 1

100

101

102

Fr
eq

ue
nc

y

A
noise

Fig. 4: Leaking the secret A which is read by the victim for
write-back (WB), write-through (WT), write-combine (WC)
and uncacheable (UC) memory, with and without a cache flush.

by an mfence instruction (serializing all loads and stores
issued prior to the mfence). We mark this address as WB,
WT, WC and UC. Optionally, we also flush the address
using clflush (which flushes it from the cache). Figure 4
shows how often a RIDL attacker reads the secret value
correctly. Note that we do not observe the signal for WB
and WT memory if we do not flush the entry from the
cache, but when we do, we observe the signal regardless
of the memory type. Both observations indicate that we
are not leaking from the cache. Also, since we leak from a
load, this cannot be the effect of store-to-load forwarding
either. Furthermore, since we observe the signal from WC
and UC memory, which have to go through the LFB, the
source of our leak must again be the LFB.

write
 (W

B)

write
 (W

T)

write
 (W

C)

write
 (U

C)

flu
sh

(W
B)

flu
sh

(W
T)

flu
sh

(W
C)

flu
sh

(UC)
10 2

10 1

100

101

102

103

Fr
eq

ue
nc

y

A
B
C
D
noise

Fig. 5: Leaking the secrets A,B,C and D, written by the victim,
for write-back (WB), write-through (WT), write-combine (WC)
and uncacheable (UC) memory, with and without a cache flush.

To gather further evidence that we are leaking from the
LFB, we perform a third experiment where we run a victim
thread which, in a loop, writes four different values to four
sequential cache lines, followed by an mfence. Optionally,
the victim thread again flushes the cache lines. We again
rule out any leaks via store-to-load forwarding, by turning
on Speculative Store Bypass Disable (SSBD [44]) for both
attacker and victim. Figure 5 shows the RIDL results. For
WB without flushing, there is a signal only for the last
cache line, which suggests that the CPU performs write
combining in a single entry of the LFB before storing the
data in the cache. More importantly, we observe the signal
regardless of the memory type when flushing. Since both
flushing and the WT, WC and UC memory types enforce

direct invalidation of writes, they must go through the
LFB. This third experiment again indicates that the source
of our leak must be the LFB.

Conclusion: our primary RIDL variant leaks from the
Line Fill Buffers (LFBs).

To launch a RIDL attack, we still need to understand
the interaction between loads, stores, the L1d cache and
the LFB, such that we can massage the data from the
victim into the LFB. Recall that in our read experiment
(Figure 4), we did not observe a signal if we do not flush
the address, even with multiple consecutive reads like we
did with writes (Figure 5). As the data is read constantly,
all loads simply hit in the L1d cache, preventing any
interaction of future loads with the LFB. In contrast, when
we do flush, the future loads miss and allocate an entry
in the LFB to await the data. In case of WC and UC
memory, the processor avoids the L1d cache and enforces
the loads to always go through the LFB. Our second
experiment (Figure 5) shows a signal for all memory types
and especially those that bypass the L1d cache, suggesting
that memory writes go via the LFB.

Conclusion: reads that are not served from L1d pull
data through the LFB, while writes push data through
the LFB to either L1d or memory.

B. Synchronization
To leak information, the attacker must make sure that

the right data is visible in the LFB at the right time, by
synchronizing with the victim. We show that there are
three ways to do so: serialization, contention and eviction.
Serialization. Intel CPUs implement a number of barriers
to perform different types of serialization [45], [46], [47],
[48]. lfence guarantees that all loads issued before the
lfence become globally visible, sfence guarantees the
same for all store instructions, and mfence guarantees that
both load and stores before the mfence become globally
visible. To enforce this behavior, the processor waits for
these loads and stores to retire by draining the load and/or
store buffers, as well as the corresponding entries in the
LFB. The mfence instruction therefore forms a point of
synchronization that allows us to observe the last few loads
and stores before the buffers are completely drained.
Contention. Another way of synchronizing victim and
attacker is to create contention within the LFB, ultimately
forcing entries to be evicted. Doing so allows us to obtain
some control over the entries that we leak, and should
not depend on SMT. To verify this, we perform the RIDL
attack without SMT by writing values in our own thread
and observing the values that we leak from the same
thread. Figure 3 shows that if we do not write the values
(“no victim”), we leak only zeros, but with victim and
attacker running in the same hardware thread (e.g., in a
sandbox), we leak the secret value in almost all cases.
Eviction. Finally, we can control the values that we leak
from the victim by evicting cache entries from the cache set
in which we are interested. To show that we can use this

0 50 100
Time

0

20

40

60

80

100

Pe
rc

en
t (

%
)

1:4 ratio

0 50 100
Time

2:1 ratio
A
B

Fig. 6: Leaking the secrets A and B written by the victim to a
series of cache lines to trigger continuous eviction. On the left,
the victim writes A then B using a 1:4 ratio. On the right, the
victim writes A then B using a 2:1 ratio.

for synchronization, we conducted an experiment where
the victim writes a value to the same cache line within
a number of pages. After a while, these writes end up
evicting the previous cache lines from the L1d cache. As
these cache lines are dirty, the processor has to write
them back through the memory hierarchy and will do this
through the LFB. We extend the victim thread to alternate
between two different values to write after finishing every
loop and also vary the amount of pages to write during
the loop. For the first test, we write the first value 1024
times and the second value 256 times (ratio 1:4) and for
the second test, we write the first value 512 times and the
second 1024 times (1:2 ratio). Figure 6 shows the results
of this experiment, where we observe the first value 80%
of the times and the second value 20% of the times in the
case of ratio 1:4 and the first value 33.3% of the times and
the second value 66.6% of the times in the case of ratio 2:1.
Hence, we conclude that we can control the (dirty) cache
entry to leak through eviction.

Conclusion: we can use serialization, contention and
eviction to synchronize attacker and victim.

VI. Exploitation with RIDL

The techniques described in the previous section allow
us to leak in-flight CPU data in a controlled fashion. Since
the underlying buffers are independent of address spaces
and privilege levels, we can mount attacks across these
security boundaries.

We have verified that we can leak information across
arbitrary address spaces and privilege boundaries, even on
recent Intel systems with the latest microcode updates and
latest Linux kernel with all the Spectre, Meltdown, L1TF
default mitigations up (KPTI, PTE inversion, etc.). In
particular, the exploits we discuss below exemplify leaks
in all the relevant cases of interest: process-to-process,
kernel-to-userspace, guest-to-guest, and SGX-enclave-to-
userspace leaks. Not to mention that such attacks can
be built even from a sandboxed environment such as
JavaScript in the browser, where the attacker has limited
capabilities compared to a native environment.

We stress that the only requirement is the presence of
in-flight secret data managed by the processor. In a non-
SMT single-core attack scenario, this is data recently read-
/written by the victim before a mode switching instruction
(iret, vmenter, etc.). In an SMT attack scenario, this
is data concurrently read/written by another hardware
thread sharing the same CPU core. Once we have spec-
ulatively leaked a value, we use the techniques discussed
earlier (based on Flush + Reload, or Evict + Reload
when clflush is not available) to expose the desired
data. The key difference with prior Meltdown/L1TF-style
attacks that cross privilege boundaries and address spaces
is that the target address used by the attacker can be per-
fectly valid. In other words, the attack does not necessarily
require a TSX transaction or an invalid page fault, but
can also be applied to a correct, branchless execution with
demand paging (i.e., a valid page fault) as we showed in
Section V. This bypasses side-channel mitigations deployed
on all the major operating systems and extends the threat
surface of prior cross-address space speculative execution
attacks to managed sandboxes (e.g., JavaScript). In the
next sections, we explore how RIDL can be used to leak
sensitive information across different security boundaries.
Covert channel. We performed an extensive evaluation
of RIDL over a number of microarchitectures, showing that
it affects all recent Intel CPUs. To verify that RIDL works
across all privilege boundaries, we implemented a proof-of-
concept covert channel, sending data across address space
and privilege boundaries.

In Table I, we present the bandwidth of the covert
channel. Note that our implementation is not yet opti-
mized for all architectures. For convenience, we utilize
Intel TSX on the architectures where available, as this
gives us the most reliable covert channel. Using TSX, we
achieve a bandwidth of 30-115 kB/s, where the limiting
factor is Flush + Reload. Where TSX is not available,
we present numbers from an unoptimized proof-of-concept
implementation which uses either demand paging, or ex-
ception suppression using speculative execution.
Challenges. In the previous sections, we discussed how
the building blocks of RIDL are used to leak in-flight data
and that we can use RIDL to leak information across se-
curity domains. Applying these techniques to exploit real-
world systems—leaking confidential data—presents some
additional challenges that we need to overcome:

1) Getting data in-flight. We need to find ways to get
restricted data that we want to leak into the LFB. There
are some obvious mechanisms for an unprivileged user to
get privileged data in-flight: interaction with the kernel
(i.e., syscalls), and interaction with a privileged process
(i.e., invoking a setuid binary). There are also many other
possibilities, such as manipulating the page cache.
2) Targeting. Due to the high amount of LFB activity,
getting the desired data out of the LFB poses a challenge.
We describe two mechanisms for targeting the data we
want to leak: synchronizing the victim, and aligning the
leaked data by repeating the attack multiple times while
filtering out the noise.

Attack variants. Table I presents results for many recent

TABLE I: Our results for 15 different microarchitectures and the measured bandwidth across security domains.

CPU Year Microcode Page Fault Misaligned
Read TSX SGX Bandwidth(B/s)

ST XT ST XT ST XT ST XT XPC SP‡ XVM SGX

Intel Xeon Silver 4110 (Skylake SP) 2017 0x200004d R/W R/W R/W R/W ✓ ✓ 45k 25k 3k
Intel Core i9-9900K (Coffee Lake R) 2018 0x9a 7 7 R/W R/W ✓ ✓ ✓ ✓ 71k 48k 10k 8k
Intel Core i7-8700K (Coffee Lake) 2017 0x96 R/W R/W R/W R/W ✓ ✓ ✓ ✓ 54k 49k 46k 65k
Intel Core i7-7800X (Skylake X) 2017 0x200004d R/W R/W R/W R/W ✓ ✓ 37k 36k 31k
Intel Core i7-7700K (Kaby Lake) 2017 0x8e R/W R/W R/W R/W ✓ ✓ ✓ ✓ 65k 46k 63k 114k
Intel Core i7-6700K (Skylake) 2015 0xc6 R/W R/W R/W R/W ✓ ✓ ✓ ✓ 68k 20k 76k 83k
Intel Core i7-5775C (Broadwell) 2015 0x1e R/W R/W R/W R/W ✓ ✓ 21k 16k 27k
Intel Core i7-4790 (Haswell) 2014 0x25 R/W R/W R/W R/W 100 50 110
Intel Core i7-3770K (Ivy Bridge) 2012 0x20 R/W R/W R/W R/W 92 41 89
Intel Core i7-2600 (Sandy Bridge) 2011 0x2e R/W R/W R/W R/W 107 73 106
Intel Core i3-550 (Westmere) 2010 0x07 R/W R/W R/W R/W 1k 245 1k
Intel Core i7-920 (Nehalem) 2008 0x12 R/W R/W R/W R/W 79 32 70
AMD Ryzen 5 2500U (Raven Ridge) 2018 0x810100b 7 7 7 7
AMD Ryzen 7 2600X (Pinnacle Ridge) 2018 0x800820b 7 7 7 7
AMD Ryzen 7 1600X (Summit Ridge) 2017 0x8001137 7 7 7 7

ST = Same-Thread, XT = Cross-Thread, SP‡ = Supervisor post-KPTI, XPC = Cross-process, XVM = Cross Virtual Machines

Intel CPUs. The ‘page fault’ column refers to standard
attacks using page fault exceptions, via invalid pointers
or demand paging. We found that we could also perform
attacks using addresses which span a cache line, which can
leak data from load ports (rather than line fill buffers).
Finally, the ‘SGX’ column confirms that, on all processors
where SGX is supported, we were able to use one of the
previous primitives to leak data from SGX enclaves.

In the following sections, we demonstrate a number of
exploits that use RIDL. We evaluated them all on a Intel
Core i7-7800X running Ubuntu 18.04 LTS.

A. Cross-process attacks
In a typical real-world setting, synchronizing at the

exact point when sensitive data is in-flight becomes non-
trivial, as we have limited control over the victim process.
Instead, by repeatedly leaking the same information and
aligning the leaked bytes, we can retrieve the secret with-
out requiring a hard synchronization primitive. For this
purpose, we show a noise-resilient mask-sub-rotate attack
technique that leaks 8 bytes from a given index at a time.

Match3

Mask2

Rotate4

movq (%1), %rax

andq $0xffffff, %rax

rorq $16, %rax

subq $0x3412, %rax

Leak (in bound)5

0f de bc 9a 78 56 34 12

00 00 00 00 00 56 34 12

Load1

00 00 00 00 00 56 00 00

00 00 00 00 00 00 00 56

Match3

Mask2

Rotate4

movq (%1), %rax

andq $0xffffff, %rax

rorq $16, %rax

subq $0x3412, %rax

Leak (out of bounds)5

ff ff 80 7f 3a 74 01 3c

00 00 00 00 00 74 01 3c

Load1

00 00 00 00 00 74 cd 2a

cd 2a 00 00 00 00 00 74

Fig. 7: Using mask, subtract, and rotate we can selectively
filter data in speculative execution to match prior observations,
eliminating a large amount of noise.

As shows in Figure 7, 1 suppose we already know part
of the bytes we want to leak (either by leaking them first

or knowing them through some other means). 2 In the
speculative path we can mask the bytes that we do not
know yet. 3 By subtracting the known value, 4 and
then rotating by 16 bytes, values that are not consistent
with previous observations will be out of bounds in our
Flush + Reload buffer, meaning we do not leak them.
This technique greatly improves the observed signal.

We use this technique to develop an exploit on Linux
that is able to leak the contents of the /etc/shadow file.
Our approach involves repeatedly invoking the privileged
passwd program from an unprivileged user. As a result
the privileged process opens and reads the /etc/shadow
file, that ordinary users cannot access otherwise. Since we
cannot modify the victim to introduce a synchronization
point, we repeatedly run the program and try to leak the
LFB while the program reads the /etc/shadow file. By
applying our previously discussed technique, with the ad-
ditional heuristic that the leaked byte must be a printable
ASCII character, we are able to leak the contents of the
file even with the induced noise from creating processes.

One observation is that the first line of the
/etc/shadow file contains the entry for the root user.
Therefore we can apply our alignment technique by fixing
the first five characters to the known string root: to
filter data from /etc/shadow. This approach is especially
powerful as it does not require any additional information
about the memory layout of the system. The attacker
simply passively listens to all LFB activity, and matches
the data with previous observations. As seen in Figure 8,
we recover 26 characters (leaking 21 unknown bytes) from
the shadow file after 24 hours. The hash entry of the root
user consists of 34 characters, which leaves 8 characters
(or several hours) left to leak. As this was only our initial
attempt to utilize RIDL for real-world attacks, we already
know we can improve the speed significantly.

B. Cross-VM attacks

When two different virtual machines are executing
simultaneously on the same physical core, a user process
running inside one VM can observe in-flight data from

0 2 4 6 8 10 12 14 16 18 20 22 24
Elapsed Time (h)

5
7
9

11
13
15
17
19
21
23
25

By
te

s l
ea

ke
d

SSH

passwd

Fig. 8: Characters leaked from the /etc/shadow file using the
passwd and SSH attack over a period of 24 hours.

the other VM. We verified that RIDL works on KVM [49]
and even on Microsoft Hyper-V (on both Windows 10 and
Windows Server 2016) with all side-channel mitigations
enabled (HyperClear [50]). KVM has deployed defenses
against L1TF which flush the L1D cache on vmenter. By
default—for performance reasons—the L1D is not flushed
on specific (manually) audited code paths. This defense
does not hinder RIDL. In fact, flushing the L1D might
actually force sensitive data to be in-flight.

We also implemented a cross-VM attack where a co-
located attacker leaks the /etc/shadow file from the victim
VM by repeatedly trying to authenticate through SSH,
confirming that virtual machine isolation does not mitigate
this class of vulnerabilities. The attacker repeatedly opens
a connection to the victim, trying to authenticate using in-
valid credentials. Similarly to the previous passwd attack,
this strategy causes the victim to read the /etc/shadow
file, allowing us to leak the contents. For our proof-of-
concept exploit, we assume we have two co-located VMs
running on co-located SMTs. We are able to retrieve 16
characters from the passwd file over a period of 24 hours,
This is slightly slower than the previous passwd attack,
since the execution path when SSH reads the shadow file
is significantly longer than for the passwd program.

C. Kernel attacks
To verify that the privilege level does not affect our

attack, we implement a user program that opens the
/proc/self/maps file (or any other /proc file) and reads 0
bytes from that file. The read system call causes the kernel
to generate the string containing the current mappings
of the process, but copies 0 bytes to the address space
of the calling program. Using the previously mentioned
attacker program running on a sibling hardware thread,
we are able to leak the first 64 bytes of the victim process
memory mappings without these ever having been copied
to user space. Our proof-of-concept exploit is able to do
this reliably in a matter of milliseconds.

The kernel also provides us with a convenient target
for attacks which do not require SMT. We can easily leak
kernel pointers and other data stored on the stack close to
the end of a system call, by executing a syscall and then
performing our attack immediately after the kernel returns
control to userspace. Since the kernel writes also use the
LFBs, we also implemented proof-of-concept exploits that

leak kernel memory writes occurring in the middle of
normal execution (for example, in a /proc handler) in
a few milliseconds. We observe the values of these writes
after the kernel has already returned from the system call,
as the cache lines are written back to memory via the LFB.

D. Leaking arbitrary kernel memory

RIDL can leak secrets accessed by the victim via both
regular and speculative memory accesses. We demonstrate
this property by implementing a proof-of-concept exploit
that can leak arbitrary kernel memory. In absence of
software bugs, unsanitized user-supplied pointers are never
accessed by the kernel. However, speculative memory ac-
cesses are still possible. For example, we found that the
function copy_from_user() in the Linux kernel (version
4.18) allows speculative memory accesses to user-supplied
pointers. It is important to note that this attack is only
possible if Supervisor Mode Access Prevention (SMAP) is
not enabled, otherwise all accesses to user memory will
be surrounded with serializing instructions (clac/stac),
effectively stopping speculation. Our exploit assumes that
SMAP is disabled, for example due to lack of hardware/-
software support.

In our exploit, we use the setrlimit() system call to
reach the copy_from_user() function. We start by calling
setrlimit() multiple times with a user-land pointer to
train the directional branch predictor. After the training,
we call setrlimit() with the pointer to the kernel data
we want to leak. The speculative memory access reads the
data from memory, notably via the LFB, allowing us to
leak it in our program after returning from the system
call. To measure the performance of our exploit, we tried
leaking the data from a kernel memory page (4,096 bytes)
containing ASCII text. On average, leaking the entire page
took us around 712 seconds, i.e., approximately 6B/s.

E. Page table disclosure

We implemented proof-of-concept exploits to leak page
table entries, since the MMU uses the LFBs to read these
entries from memory at every page table walk. This dis-
closes the physical addresses of pages in our own process,
which is important information to mount other attacks
(such as Rowhammer attacks [51], [52], [53], [54], [55], [56],
[57], [58], [59]). This also allows us to observe page table
walks and the page table entries used by a process running
on a sibling hardware thread. Furthermore, by performing
sliding similar to the AnC attack [60], this primitive allows
us to break ASLR in a managed sandbox.

F. SGX attacks

We also verified that SGX enclaves are vulnerable to
our cross-process attacks when SMT is enabled, allowing
an attacker on the same physical core to leak SGX-initiated
reads and writes to memory. We built SGX enclaves in pre-
release mode (with debugging disabled), and successfully
reproduced the cross-process experiments. Our proof-of-
concept exploit trivially leaks reads and writes from a
victim enclave running on a sibling hardware thread.

Our exploit can also leak the values of registers used by
the enclave, since microcode reads and writes the contents
of enclave registers to memory when the enclave is inter-
rupted. By using mprotect to cause faults when accessing
enclave pages, we repeatedly interrupt the enclave (to
synchronize), allowing us to leak the contents of enclave
registers. Unlike the Foreshadow attack [3], we are able
to perform these attacks solely from user space, with no
need to manipulate privileged state such as page tables.
This means that SGX enclave secrets should be considered
compromised on any machine where SMT is enabled, even
if an attacker does not have control over the kernel or
hypervisor. When an attacker is able to modify the kernel,
this attack can be further improved with SGX-Step [61],
using timer interrupts to single-step through enclave code
and provide a fine-grained synchronization primitive.

G. JavaScript attacks

To further demonstrate the implications of RIDL, we
show that RIDL can be exploited even within restricted
sandboxed environments such as JavaScript. In recent
years, browser vendors have been proactively working on
mitigations to protect against side-channel attacks [62],
[63], [64], [65]—speculative execution side channels, in
particular. For instance, Chrome fast-forwarded the de-
ployment of process-per-origin [63] as a mitigation against
Spectre attacks. However, these mitigation efforts assume
that data cannot leak across privilege boundaries, and fail
to prevent in-flight data from being leaked with RIDL.

Building a RIDL attack from the browser requires a
high level of control over the instructions executed by the
JavaScript engine. Conveniently, WebAssembly allows us
to generate code which meets these requirements and is
available as a standard feature in modern browsers. We
found that we can use WebAssembly in both Firefox and
Chrome to generate machine code which we can use to
perform RIDL-based attacks. Furthermore, all the major
browsers try to reduce the memory footprint of the We-
bAssembly heap by relying on demand paging [60], which
we can use to perform an attack along the lines of the one
previously presented in Listing 1. That is, we can rely on
the valid page fault generated by our memory access to
trigger an exception and spill the in-flight data.

Generating the correct machine code and triggering
the page fault are relatively straightforward. However,
constructing a reliable feedback channel for speculative
attacks within the browser presents some challenges. The
absence of the clflush instruction forced our implemen-
tation to rely on an Evict + Reload channel to leak
the in-flight data. Since the process of evicting entries
from the L1D cache makes extensive use of the LFBs—
due to TLB misses as well as filling cache lines—this adds
a significant source of noise. We also need to ensure that
the TLB entries for our reload buffer are still present after
the eviction process, adding another source of noise to our
attack. Finally, we need a reliable high-resolution timer to
measure cache evictions for our Evict + Reload channel.
While built-in high-resolution timers have been disabled
as part of browser mitigations against side-channel at-
tacks [64], [63], prior work has demonstrated a variety

of techniques to craft new high-resolution timers [66],
[56], [60], such as SharedArrayBuffer [60] and GPU-based
counters [56]. The SharedArrayBuffer feature was recently
re-enabled in Google Chrome, after the introduction of Site
Isolation [67], [68]. Mozilla Firefox is currently working on
a similar Process Isolation strategy [69].

Despite these challenges, we successfully implemented
a proof-of-concept exploit on top of Firefox’ SpiderMonkey
JavaScript engine to reliably leak data from a victim
process running on the same system. For simplicity, our
exploit uses an old-style built-in high-resolution timer in
SpiderMonkey to measure cache evictions. When targeting
a victim process repeatedly writing a string to memory, our
exploit running in the JavaScript sandbox on a different
hardware thread is capable of leaking the victim string at
a rate of ~1B/s. We also implemented a high-resolution
timer in Chrome using WebAssembly threads which pro-
vided sufficient accuracy for our Evict + Reload chan-
nel. At the time of writing, any site can opt into this
functionality using the ‘origin trials’ system. Although we
do not currently have a reliable RIDL exploit running
inside unmodified Chrome, we believe that our results
already cast doubt on the effectiveness of site isolation as
a mitigation against side-channel attacks.

VII. Speculative execution attacks
Since Horn [79] initially reported this new class of spec-

ulative execution side-channel attacks, researchers started
digging into modern processor microarchitectures to spot
the next generation of vulnerabilities. The result is a
plethora of new attacks and attack vectors [1], [2], [3], [75],
[5], [70], [4], [71].

The taxonomy of these attacks is confusing (at best)
since attacks and attack vectors oftentimes have been
reported as equivalent and frequently interchanged. In this
section, we try to shed some light on the topic describing
similarities and differences among the different classes of
attacks and categorizing them based on their nature, capa-
bilities, and constraints. We summarize our categorization
in Table II. We divide the currently existing attacks based
on the nature of their speculation: control speculation vs.
data speculation. We further introduce a subcategorization
of data speculation attacks, which we define as exception
deferral attacks (e.g., RDCL and L1TF).

A. Control Speculation
Control speculation can be triggered in multiple ways.

In Section II, we already described Out-of-Order execution
and Transactional Synchronization eXtensions explaining
how these trigger speculative execution. Here we focus on
the three main forms of control instructions that can be
speculated upon: 1 direct branches, 2 indirect branches
and calls, and 3 return instruction.

Direct branches: Direct (or conditional) branches are
optimized in hardware by the Branch Prediction Unit
(BPU). This unit keeps track of the previous outcomes of
a conditional branch in order to predict which code path
will be taken, and the out-of-order execution engine then
continues execution along the predicted path. Mistraining

TABLE II: List of currently disclosed attacks categorized by nature, capabilities and constraints. A checkmark (✓) under
capabilities reports an attack demonstrated in the literature. A checkmark under the constraints represents a requirement
to perform the attack. We report supervisor in both Intra/Cross- address space scenarios both pre- and post- KPTI [9].

Capabilities Constraints

Attacks Leak cause Exception
deferral Intra-address space Cross-address space Victim

cooperation
Valid address

translation
SB SP† SGX XPC SP‡ XVM

Control Speculation
BCB{S} [2], [5] Direct branch ✓ ✓ ✓
BTI [2], [70] Indirect branch ✓ ✓ ✓ ✓
RSB [4], [71] Return stack ✓ ✓ ✓ ✓
Data Speculation

SSB [72] Memory
Disambiguation ✓ ✓ ✓ ✓

RDCL [1]
RSRR [73] L1D ✓ ✓ ✓ ✓
LazyFP [74] FPU ✓ ✓ ✓
L1TF [75] L1D ✓ ✓ ✓ ✓ ✓ ✓ ✓
RIDL In-flight buffers

(LFB, Load Ports) ✓ ✓ ✓ ✓ ✓ ✓

SB = Sandbox, SP† = Supervisor pre-KPTI, SP‡ = Supervisor post-KPTI, XPC = Cross-process, XVM = Cross Virtual
Machines

TABLE III: List of existing mitigations against currently disclosed speculative execution attacks grouped based on the nature of
the defense.

Attacks

Inhibit trigger Hide Secret

LFENCE
[7

6]
IR

BS,
IB

PB

ST
IB

P
[7

6]
SS

BD
[4

4]
RSR

R
Fix

[7
3]

Ret
pol

in
e [6

]
RSB

Fill
in

g
[7

7]

Eag
er

FPU
[7

4]

KPTI [9
]

Arr
ay

In
de

x

M
as

ki
ng

[7
]

M
ul

ti-
Pro

ce
ss

Iso
la

tio
n

[6
3]

L1D
Flu

sh
in

g
[7

8]
PTE

In
ve

rs
io

n
[7

8]
Hyp

er
Clea

r [5
0]

Control Speculation
BCB{S} [2], [5] G G SB
BTI [2], [70] G G G SB
RSB [4], [71] SB

Data Speculation
SSB [72] G G SB
RDCL [1] SP†

RSRR [73] G SP†

LazyFP [74] G

L1TF [75] G SB,
SGX XVM

RIDL

G = Generic, SB = Sandbox, SP† = Supervisor pre-KPTI, XPC = Cross-process, XVM = Cross Virtual Machines

the BPU allows attacks known as Bounds Check Bypass
(BCB) [2], [5], such as the one in Listing 2.

1 if (x < arr_size)
2 y = probeTable[arr[x] * 4096];

Listing 2: An example of Bounds Check Bypass.

An attacker who controls the variable x can mistrain
the conditional branch to always take the if code path.
When an out-of-bounds x is later passed to his code, the
BPU will speculate on the code path to take, resulting in
a speculative OoB access which can be leaked through a
cache-based covert channel. A variant of this attack targets
bounds check bypass on stores (BCBS) [5], which shows
the issue is not limited to speculative loads.

Indirect branches and calls: These branches are also

targets of speculative execution optimizations. The Branch
Target Buffer (BTB) is a unit embedded in modern CPUs
that stores a mapping between the source of a branch
or call instruction and its likely destination. An attacker
running on the same physical core of the victim can
poison the BTB to perform attacks known as Branch
Target Injection (BTI). The attacker pollutes the buffer
by injecting arbitrary entries in the table to divert the
victim’s indirect branches to the target of interest—within
the victim address space. No checks are performed on
the pid, hence the possibility of cross-process mistraining.
This makes it possible to build speculative code-reuse (e.g.,
ROP) attacks to leak data. Branch target injection has
been demonstrated effective to escape sandboxed environ-
ments (e.g., JavaScript sandbox) [2], to build cross-process
attacks [2] and to leak data from SGX enclaves [70].

Return speculation: The use of the BTB is inefficient for

the prediction of return instructions, as functions may have
many different call sites. Therefore, modern processors
employ a Return Stack Buffer (RSB), a hardware stack
buffer to which the processor pushes the return address
whenever it executes a call instruction. Whenever the
processor stumbles upon a return instruction, it pops the
address from the top of the RSB to predict the return
point of the function, and it executes the instructions along
that path speculatively. The RSB misspeculates when the
return address value in the RSB does not match the one
on the software stack. Unfortunately, the RSB consists of
a limited number of entries and employs a round robin
replacement policy. As a result, an attacker can overflow
the RSB to overwrite the “alleged” return address of a
function and speculatively execute the code at this address.
Researchers have reported RSB attacks against sandboxes
and enclaves [4], [71].

Constraints: Control speculation attacks, while powerful,
are only effective in intra-address space attacks (e.g., sand-
boxes). Furthermore, their exploitation requires (some)
cooperation from the victim’s code. In situations where
the attacker can generate code inside the victim (e.g.,
JIT compilation inside a browser, eBPF in the Linux
kernel) it is easy to meet this constraint. In the other
cases (e.g., enclaves or Linux kernel without eBPF), this
constraint is harder to meet. The attacker needs to mount
confused-deputy attacks that lure the victim component
into speculatively executing specific “gadgets”, making
exploitation more difficult. Perhaps more importantly, this
class of attacks can be mitigated in software using either
compiler support for emitting safe code or manually stop-
ping speculation when deemed dangerous.

B. Data Speculation

Data speculation is the second type of speculative exe-
cution. This type of speculation does not divert the control
flow of the application, but instead speculates on the value
to be used. As discussed in Section VII-A, manipulating
control flow is not enough to build effective cross-privilege
and cross-address space attacks. Attackers can overcome
these constraints by taking advantage of data speculation.

Speculative Store Bypass (SSB) [72] takes advantage of
the address prediction performed by the Memory Disam-
biguator. This unit is in charge of predicting read-after-
write hazards. If the prediction fails, the attacker may be
able to induce computations based on stale data previously
stored at that address providing a speculative gadget to
leak data. However, this attack provides a small window
of exploitation and works only within intra-address space
boundaries, making it hard to exploit in practice.

Exception deferral: To bypass this limitation and allow
cross-boundary leaks, researchers identified a new class
of data speculation attacks that we refer to as exception
deferral attacks. A similar distinction was previously made
in the literature [5] under the nomenclature of exception
speculation. However, as explained in Section II, specu-
lation represents a misleading terminology of the actual
issue under scrutiny. The CPU does not perform any
type of speculation on the validity of the operation. It

simply executes instructions speculatively out-of-order and
eventually retires them in-order. The flaw of this design is
that the Retirement Unit is officially in charge of handling
CPU exceptions. Thus, an attacker can perform loads that
trigger exceptions (e.g., Page Faults) during the specula-
tive execution window, but such loads will not fault until
the Retirement Unit performs the compulsory checks.

Multiple attacks have exploited CPUs’ exception de-
ferral in order to circumvent different security checks.
RDCL [1] (known as Meltdown) and RSRR [73] exploited
the deferral of a page fault (#PF) exception caused by
the presence of the supervisor bit in order to read privi-
leged kernel memory and Model Specific Registers (MSRs).
LazyFP [74] took advantage of the deferral of the Device
not available (#NM) exception to leak Floating Point Units
(FPUs) register state and break cryptographic algorithms.
Foreshadow [75] disclosed how the deferral of a Terminal
Fault (#TF) generated by a failed check on the present or
reserved bits of a PTE allows leaking arbitrary contents
from the L1 cache. Given that Foreshadow operates on
physical memory addresses, it can leak information across
privilege and address space boundaries breaking kernel,
enclaves, and VM isolation. Crafting Foreshadow attacks,
however, requires control over addresses residing in PTEs
as we discuss next.

Constraints: Data speculation allows attackers to operate
on data they are not supposed to have access to. Further-
more, when combined with exception deferral, they gain
the capability of not relying on victim code to leak data.
With RDCL, for example, attackers can directly read from
kernel memory without relying on “gadgets” in the kernel
code. Most of these attacks, however, are still limited by
the necessity of a valid address translation. That is, a valid
(and known) address to leak the data from. For instance,
in the case of Foreshadow, the attacker can theoretically
read any arbitrary cache line in the L1d cache. However,
since L1d cache lines are physically tagged, the attacker
needs control over virtual-to-physical address mappings
(PTEs). This constraint is easily met in situations where
the attacker controls these mappings, such as inside guest
VMs or SGX enclaves. In the other cases, this constraint
is harder to meet, such as when attacking the kernel or
another user process.

C. Comparing with RIDL

While RIDL still falls under the umbrella of data spec-
ulation attacks, it presents a unique feature that makes it
stand out among the other attacks: the ability to induce
leaks that are completely agnostic to address translation.
All the other attacks other than LazyFP [74] (which is
limited to leaking stale floating point registers) require a
valid address for performing tag checks before retrieving
the data. If this check fails, the speculation aborts. On the
other hand, in the case of RIDL, the attacker can access
any in-flight data currently streaming through internal
CPU buffers without performing any check. As a result,
address space, privilege, and even enclave boundaries do
not represent a restriction for RIDL attacks.

VIII. Existing defenses

In response to the plethora of attacks described in
Section VII, hardware and software vendors have been
struggling to catch up with mitigations that can safeguard
vulnerable systems. In this section, we perform an exhaus-
tive analysis of all the existing state-of-the-art mitigations,
pinpointing the current shortcomings of such solutions
when applied to the RIDL family of attacks.

These mitigations can operate at three different layers:
1 inhibiting the trigger of the speculation, 2 protecting

the secret the attacker is trying to disclose, or 3 disrupt-
ing the channel of the leakage. We focus on the first two
classes, which are specific to speculative execution attacks;
the third typically applies to any timing side-channels
(e.g., disabling high-precision timers in browsers [63]). We
summarize all the currently deployed mitigations and their
effects on currently-known attacks in Table III.

A. Inhibiting the trigger

To protect against control speculation attacks, vendors
have released mitigations that prevent the hardware from
executing (speculatively) unsafe code paths. For instance,
Intel released a microcode update with three new ca-
pabilities: IRBS, STIBP and IBPB to prevent indirect
branch poisoning instructions and to protect against BTI
attacks [76]. Another suggested mitigation uses the lfence
instruction to restrict control speculation. This can be
applied as a compiler-based defense, mitigating multiple
families of attacks. 1 To protect against BCB attacks, the
compiler inserts an lfence instruction after conditional
branches to stop the BPU from speculating on the code
path taken. 2 To protect against BTI attacks, the lfence
instruction is introduced as part of the Retpoline [6] mitiga-
tion. Researchers have also suggested extending Retpoline
to guard ret instructions and prevent RSB attacks [71].
The Retpoline mitigation converts each indirect jump
into a direct call to a stub function, that returns to the
destination of the initial indirect branch. This is achieved
by altering the stack, replacing the return address of the
function. Since return instructions also trigger speculation,
an lfence loop is inserted at the expected return site of
the stub, to inhibit further code execution. Retpoline can
also perform RSB filling [77]. This is required for Intel
architectures newer than Haswell where, in case of an
empty RSB, the BTB provides the speculation address.

Software mitigations such as Retpoline do not apply
for data speculation attacks since there is no need to
(speculatively) divert the control flow of the application.
As such, most defenses against data speculation have been
in the form of microcode updates, such as:

• SSBD: Speculative Store Bypass Disable adds an MSR
which can be used to prevent loads from executing
before addresses of previous stores are known [44].

• RSRR fix: Intel’s mitigation for Rogue System Regis-
ter Reads patches rdmsr to avoid speculative L1 loads
of MSR data for unprivileged users [73].

Finally, to protect against LazyFP, it suffices to enable
Eager FPU context switching. This restores FPU register

state when performing a context switch, preventing spec-
ulative execution on stale register contents [74].

B. Protect the secret
When preventing the CPU from speculating becomes

unfeasible, the other solution is to conceal the sensitive
information from the attacker. Defenses falling under this
category are clearly context sensitive. That is, they highly
depend on the environment they get deployed on since
different environments secure different secrets. A primary
example is Kernel Page Table Isolation (KPTI) [9]. KPTI
was effectively the first mitigation deployed against spec-
ulative execution attacks and was introduced to protect
the Kernel against RDCL (i.e., Meltdown) by separating
kernel and user address spaces.

A similar compartmentalization approach was then
deployed in other environments. 1 Array index masking
was deployed in the kernel and in sandboxed environ-
ments to protect against intra-address space BCB attacks.
2 Multi-process isolation, similarly to KPTI, protects

sandboxed environments from cross-domain attacks (e.g.,
JavaScript VMs) by generating a different process for every
origin—hence a different address space.

These mitigations were considered effective until the
disclosure of the Foreshadow attack. Foreshadow relaxed
the requirement of victim cooperation for cross-address
space attacks by leaking any data present in the L1d
cache. Protecting against this new class of attacks requires
stronger solutions targeting physical addresses. Two in-
stances of such mitigations are PTE inversion and L1d
flush [78]. PTE inversion protects kernel and enclave mem-
ory from being leaked through the L1d cache by scrambling
the physical address in the PTE when a page is marked
as non-present. L1d flush removes any secret information
from the cache during a context switch, making it impos-
sible to retrieve any data. The latter is part of a set of
mitigations intended for environments such as the cloud,
where an attacker may have control of PTE contents.

Another example of such solutions is HyperClear [50],
deployed by Microsoft to safeguard Hyper-V. The mit-
igation consists of three units: 1 The Core Scheduler,
which performs safe scheduling of sibling logical processors
by allocating resources for a single VM on the same
physical processor. 2 Address space isolation per virtual
processor, which limits the hypervisor access to memory
only belonging to the VMs running on the same phys-
ical core—preventing cross-VM leaks. 3 Sensitive data
scrubbing, which protects nested hypervisors from leaking
sensitive data. This is done by zeroing the latter before
switching VMs and avoiding the performance impact of a
complete L1d flush. Similar solutions have been deployed
on other hypervisors such as KVM [8].

C. Defenses vs. RIDL
In Section VI, we reported the results of all our proof-

of-concept exploits on fully patched systems with the
latest microcode updates. As the positive results demon-
strate, the currently deployed mitigations fail to protect
against RIDL attacks. As we discussed in Section VIII-A,

mitigations for data speculation attacks usually rely on
microcode patches. Since the existing defenses trying to
inhibit speculation do not account for the Line Fill Buffer,
RIDL is not impacted by any of them.

On the other hand, defenses aiming at protecting the
secret fail at defending from RIDL attacks for a different
reason: they all consider a valid address a strict require-
ment. RIDL demonstrates that not all the sources of data
speculation rely on this assumption. Our results for the
i9-9900K show the risk of relying on “spot” mitigations
in hardware; although the address-based page faults used
by Meltdown-style attacks have been mitigated in silicon,
RIDL attacks using other exceptions continue to work.
Furthermore, it demonstrates for the first time a cross-
address space and cross-privilege attack that relies only
on in-flight, CPU-internal data, demonstrating the latent
danger introduced by the related microptimizations.

IX. New Mitigations

The response to the disclosure of speculative execution
attacks has so far been the deployment of spot mitigations
in software before mitigations become available in hard-
ware [80]. For example, for Meltdown, the first deployed
software mitigation (i.e., KPTI) was the separation of
address spaces between user space and kernel space by
the operating system. While effective, on top of increasing
complexity in the kernel, KPTI has been shown to have
performance penalties under certain workloads [81]. We
now describe how this spot mitigation approach is not well-
suited for RIDL.

Mitigating RIDL in software. Since sensitive infor-
mation can be leaked from sibling hardware threads, we
strongly recommend disabling SMT to mitigate RIDL.
Intel suggests RIDL can also be mitigated by ensuring that
only trusted code is ever executed in sibling threads. How-
ever, this strategy introduces non-trivial complexity, as it
requires scheduler modifications as well as synchronization
at system call entry points. It is also insufficient to protect
sandboxed applications or SGX enclaves.

Worse, it is still possible to leak sensitive information
from another privilege level within a single thread (as
some of our exploits demonstrated), including information
from internal CPU systems such as the MMU. To protect
sensitive information in the kernel or in a different address
space, the kernel needs to flush the LFBs and other in-
flight buffers before returning to userland, similarly to
the L1 flush in the Foreshadow mitigation. Similarly, the
hypervisor needs to flush the buffers before switching to
VM execution. In the case of hardware-based components
such as SGX or the MMU, the flushing cannot be easily
done in software.

Intel’s published mitigation involves updated mi-
crocode, which allows software to flush several types of
in-flight buffers (LFBs, load ports, and store buffers) using
the verw instruction. After performing this flush (e.g.,
when returning from a system call), a lfence or other
speculation barriers are required to prevent code from
speculatively executing across security boundaries before
the buffers are cleared. The updated microcode also flushes

these buffers when flushing the L1 cache and when leav-
ing/exiting SGX. Note that this cannot preclude leakage
of internal CPU data (e.g., from the MMU).

Moving forward. In this paper, we primarily focused on
speculation done on LFB entries. However, we have also
shown there are other sources of in-flight data and believe
there are likely more—especially given decades of perfor-
mance optimizations in the CPU pipeline. Furthermore,
as discussed in this section, because these optimizations
are applied deeply in the CPU pipeline, spot mitigations
will likely be complex and expensive. Moving forward,
we see two directions for mitigating these issues: 1) As
Intel could release a microcode update that mitigated SSB
by completely disabling speculative store forwarding, we
believe it should make a similar mitigation possible for all
possible sources of speculation when applying micro-opti-
mizations. It will then be up to system software to decide
which optimizations to turn off until hardware mitigations
become available. 2) Finding all instances of RIDL will
likely take a long time due to the complexity of these
micro-optimizations. Hence, rather than spot mitigations
that are often ineffective against the next discovered at-
tack, we need to start the development and deployment of
more fundamental mitigations against the many possible
classes of speculative execution attacks.

X. Conclusion

We presented RIDL, a new class of speculative execu-
tion vulnerabilities able to leak arbitrary, address-agnostic
in-flight data from normal execution (without branches
or errors), including sandboxed execution (JavaScript in
the browser). We showed RIDL can be used to perform
attacks across arbitrary security boundaries and presented
real-world process-, kernel-, VM-, and SGX-level exploits.
State-of-the-art mitigations against speculative execution
attacks (including the in-silicon mitigations in Intel’s re-
cent CPUs) are unable to stop RIDL, and new soft-
ware mitigations are at best non-trivial. RIDL puts into
question the current approach of “spot” mitigations for
individual speculative execution attacks. Moving forward,
we believe we should favor more fundamental “blanket”
mitigations over these per-variant mitigations, not just for
RIDL, but for speculative execution attacks in general.

Disclosure

The authors from VU Amsterdam (VUSec) submitted
PoC exploits for the RIDL class of vulnerabilities to Intel
on September 12, 2018. Intel immediately acknowledged
the vulnerability and rewarded RIDL with the Intel Bug
Bounty (Side Channel) Program. Since then, Intel led the
disclosure process, notifying all the affected software ven-
dors and other hardware vendors potentially susceptible
to similar issues (see details below). VUSec submitted the
end-to-end analysis presented in this paper including all
the exploits (except the one in Section VI-D) to IEEE
Symposium on Security & Privacy on November 1, 2018.

Giorgi Maisuradze independently discovered the same
class of vulnerabilities in June 2018 as an intern in a
side-channel project at Microsoft Research. The findings

were reported to Intel via the Microsoft Security Response
Center. Section VI-D is entirely based on his findings.

Updated information about other independent finders
of the RIDL (or MDS) class of vulnerabilities not part of
this research can be found at https://mdsattacks.com.

Statements that we received from CPU vendors about
RIDL are available in Appendix B.

Acknowledgements
We would like to thank our shepherd, Hovav Shacham,

and the anonymous reviewers for their valuable feedback.
This work was supported by the European Union’s Horizon
2020 research and innovation programme under grant
agreements No. 786669 (ReAct) and No. 825377 (UNI-
CORE), by the United States Office of Naval Research
(ONR) under contracts N00014-17-1-2782 and N00014-
17-S-B010 “BinRec”, by Intel Corporation through the
Side Channel Vulnerability ISRA, and by the Netherlands
Organisation for Scientific Research through grants NWO
639.023.309 VICI “Dowsing”, NWO 639.021.753 VENI
“PantaRhei”, and NWO 016.Veni.192.262. This paper re-
flects only the authors’ view. The funding agencies are
not responsible for any use that may be made of the
information it contains.

References
[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,

J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading Kernel Memory from User
Space,” in USENIX Security’18.

[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre Attacks: Exploiting Speculative Exe-
cution,” in S&P’19.

[3] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution,” in USENIX
Security’18.

[4] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre Returns! Speculation Attacks using the
Return Stack Buffer,” in USENIX WOOT’18.

[5] V. Kiriansky and C. Waldspurger, “Speculative buffer over-
flows: Attacks and Defenses,” in arXiv’18.

[6] P. Turner, “Retpoline: a Software Construct for Preventing
Branch Target Injection,” https://support.google.com/faqs/
answer/7625886, Jan 2018.

[7] F. Pizlo, “What Spectre and Meltdown Mean
For WebKit,” https://webkit.org/blog/8048/
what-spectre-and-meltdown-mean-for-webkit/, Jan 2018.

[8] “Linux: L1TF - L1 Terminal Fault,” https://www.
kernel.org/doc/html/latest/admin-guide/l1tf.html#
mitigation-control-kvm Retrieved 15.10.2018.

[9] “KPTI - Linux Documentation,” https://www.kernel.org/doc/
Documentation/x86/pti.txt Retrieved 15.10.2018.

[10] S. van Schaik, C. Giuffrida, H. Bos, and K. Razavi, “Malicious
Management Unit: Why Stopping Cache Attacks in Software
is Harder Than You Think,” in USENIX Security’18.

[11] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games–
Bringing Access-Based Cache Attacks on AES to Practice,” in
S&P’11.

[12] Y. Yarom and K. Falkner, “FLUSH + RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack.” in
USENIX Security’14.

[13] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and
Countermeasures: the Case of AES,” in Cryptographers Track
at the RSA Conference. Springer, 2006, pp. 1–20.

[14] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared
Cache Attack that Works Across Cores and Defies VM
Sandboxing–and its Application to AES,” in S&P’15.

[15] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel,
“A High-Resolution Side-Channel Attack on Last-Level
Cache,” in DAC’16.

[16] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level
Cache Side-Channel Attacks are Practical,” in S&P’15.

[17] R. Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of Research and Development,
1967.

[18] M. E. Thomadakis, “The Architecture of the Nehalem Proces-
sor and Nehalem-EP SMP Platforms,” 2011.

[19] D. W. Clift, D. D. Boggs, and D. J. Sager, “Processor with
Registers Storing Committed/Speculative Data and a RAT
State History Recovery Mechanism with Retire Pointer,” Oct
2003, US Patent 6,633,970.

[20] D. D. Boggs, S. Weiss, and A. Kyker, “Branch Ordering Buffer,”
Sep 2004, US Patent 6,799,268.

[21] J. M. Abramson, D. B. Papworth, H. H. Akkary, A. F. Glew,
G. J. Hinton, K. G. Konigsfeld, and P. D. Madland, “Out-
Of-Order Processor With a Memory Subsystem Which Han-
dles Speculatively Dispatched Load Operations,” Oct 1995, US
Patent 5,751,983.

[22] G. N. Hammond and C. C. Scafidi, “Utilizing an Advanced
Load Address Table for Memory Disambiguation in an Out of
Order Processor,” Dec 2003, US Patent 7,441,107.

[23] H.-S. Kim, R. S. Chappell, C. Y. Soo, and S. T. Srinivasan,
“Store Address Prediction for Memory Disambiguation in a
Processing Device,” Sep 2013, US Patent 9,244,827.

[24] V. Mekkat, O. Margulis, J. M. Agron, E. Schuchman,
S. Winkel, Y. Wu, and G. Dankel, “Method and Apparatus for
Recovering From Bad Store-To-Load Forwarding in an Out-Of-
Order Processor,” Dec 2015, US Patent 9,996,356.

[25] T. Kurts, Z. Wayner, and T. Bojan, “Apparatus and Method for
Bus Signal Termination Compensation During Detected Quiet
Cycle,” Dec 2002, US Patent 6,842,035.

[26] A. Koker, T. A. Piazza, and M. Sundaresan, “Scatter/Gather
Capable System Coherent Cache,” May 2013, US Patent
9,471,492.

[27] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation
Techniques for Improving Load Related Instruction Schedul-
ing,” in ISCA’99.

[28] H. Akkary, J. M. Abramson, A. F. Glew, G. J. Hinton,
K. G. Konigsfeld, P. D. Madland, M. S. Joshi, and B. E. Lince,
“Methods and Apparatus for Caching Data in a Non-Blocking
Manner Using a Plurality of Fill Buffers,” Oct 1996, US Patent
5,671,444.

[29] H. Akkary, J. M. Abramson, A. F. Glew, G. J. Hinton,
K. G. Konigsfeld, P. D. Madland, M. S. Joshi, and B. E. Lince,
“Cache Memory System Having Data and Tag Arrays and
Multi-Purpose Buffer Assembly With Multiple Line Buffers,”
Jul 1996, US Patent 5,680,572.

[30] S. Palanca, V. Pentkovski, S. Tsai, and S. Maiyuran, “Method
and Apparatus for Implementing Non-Temporal Stores,” Mar
1998, US Patent 6,205,520.

[31] S. Palanca, V. Pentkovski, and S. Tsai, “Method and Apparatus
for Implementing Non-Temporal Loads,” Mar 1998, US Patent
6,223,258.

[32] J. M. Abramson, H. Akkary, A. F. Glew, G. J. Hinton, K. G.
Koningsfeld, and P. D. Madland, “Method and Apparatus for
Performing Load Operations in a Computer System,” Dec 1997,
US Patent 5,694,574.

[33] M. Bodas, G. J. Hinton, and A. F. Glew, “Mechanism to
Improved Execution of Misaligned Loads,” Dec 1998, US Patent
5,854,914.

https://mdsattacks.com
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html#mitigation-control-kvm
https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html#mitigation-control-kvm
https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html#mitigation-control-kvm
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt

[34] J. M. Abramson, H. Akkary, A. F. Glew, G. J. Hinton,
K. G. Konigsfeld, and P. D. Madland, “Method and Apparatus
for Blocking Execution of and Storing Load Operations during
their Execution,” Mar 1999, US Patent 5,881,262.

[35] A. Glew, N. Sarangdhar, and M. Joshi, “Method and Apparatus
for Combining Uncacheable Write Data Into Cache-Line-Sized
Write Buffers,” Dec 1993, US Patent 5,561,780.

[36] M. S. Joshi, A. F. Glew, and N. V. Sarangdhar, “Write Combin-
ing Buffer for Sequentially Addressed Partial Line Operations
Originating From a Single Instruction,” May 1995, US Patent
5,630,075.

[37] S. Palanca, V. Pentkovski, N. L. Cooray, S. Maiyuran, and
A. Narang, “Method and System for Optimizing Write Com-
bining Performance in a Shared Buffer Structure,” Mar 1998,
US Patent 6,122,715.

[38] J. D. Dundas, “Repair of Mis-Predicted Load Values,” Mar
2002, US Patent 6,883,086.

[39] Y.-K. Chen, C. J. Hughes, and J. M. Tuck, III, “System and
Method for Cache Coherency in a Cache With Different Cache
Location Lengths,” Dec 2004, US Patent 7,454,576.

[40] D. Kanter, “Intel’s Haswell CPU microarchitecture,” 2012.
[41] Intel, “Intel 64 and IA-32 Architectures Optimization Reference

Manual,” Jun 2016.
[42] Intel, “Write Combining Memory Implementation Guidelines,”

1998.
[43] A. F. Glew and G. J. Hinton, “Method and Apparatus for Pro-

cessing Memory-Type Information Within a Microprocessor,”
Dec 1996, US Patent 5,751,996.

[44] Intel, “Speculative Store Bypass / CVE-2018-
3639 / INTEL-SA-00115,” https://software.intel.
com/security-software-guidance/software-guidance/
speculative-store-bypass Retrieved 15.10.2018.

[45] S. Palanca, V. Pentkovski, S. Maiyuran, L. Hacking, R. A. Gol-
liver, and S. S. Thakkar, “Synchronization of Weakly Ordered
Write Combining Operations Using a Fencing Mechanism,”
Mar 1998, US Patent 6,073,210.

[46] S. Palanca, S. A. Fischer, S. Maiyuran, and S. Qawami,
“MFENCE and LFENCE Micro-Architectural Implementation
Method and System,” Jul 2002, US Patent 6,651,151.

[47] L. E. Hacking and D. Marr, “Synchronization of Load Opera-
tions Using Load Fence Instruction in Pre-Serialization/Post-
Serialization Mode,” Feb 2001, US Patent 6,862,679.

[48] L. E. Hacking and D. Marr, “Globally Observing Load Opera-
tions Prior to Fence Instruction and Post-Serialization Modes,”
Jan 2004, US Patent 7,249,245.

[49] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“KVM: the Linux Virtual Machine Monitor,” in Proceedings
of the Linux symposium, vol. 1. Dttawa, Dntorio, Canada,
2007, pp. 225–230.

[50] D. Hepkin, “Hyper-V HyperClear Mitigation for L1 Terminal
Fault,” https://blogs.technet.microsoft.com/virtualization/
2018/08/14/hyper-v-hyperclear/, Aug 2018.

[51] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss,
C. Maurice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida,
“Drammer: Deterministic Rowhammer Attacks on Mobile Plat-
forms,” in CCS’16.

[52] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and
H. Bos, “Flip Feng Shui: Hammering a Needle in the Software
Stack,” in SEC’16.

[53] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript,” in
DIMVA’16.

[54] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est
Machina: Memory Deduplication as an Advanced Exploitation
Vector,” in SP’16.

[55] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges,” in BHUS’15.

[56] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning

Unit: Accelerating Microarchitectural Attacks with the GPU,”
in S&P’18.

[57] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploit-
ing Correcting Codes: On the Effectiveness of ECC Memory
Against Rowhammer Attacks,” in S&P’19.

[58] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida,
H. Bos, and K. Razavi, “Throwhammer: Rowhammer Attacks
over the Network and Defenses,” in USENIX ATC’16.

[59] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating
Software Mitigations against Rowhammer: A Surgical Precision
Hammer,” in RAID’18.

[60] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida,
“ASLR on the Line: Practical Cache Attacks on the MMU,”
in NDSS’17.

[61] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-step: A Practi-
cal Attack Framework for Precise Enclave Execution Control,”
in SysTEX’17.

[62] T. C. Projects, “Mitigating Side-Channel Attacks,” https://
www.chromium.org/Home/chromium-security/ssca Retrieved
31.12.2018.

[63] M. Bynens, “Untrusted Code Mitigations,” https://v8.dev/
docs/untrusted-code-mitigations, Jan 2018.

[64] L. Wagner, “Mitigations Landing for New Class of Tim-
ing Attack,” Jan 2018, https://blog.mozilla.org/security/
2018/01/03/mitigations-landing-new-class-timing-attack/ Re-
trieved 31.12.2018.

[65] T. Ritter, “Firefox - Fuzzy Timers Changes,” Oct 2018, https:
//hg.mozilla.org/mozilla-central/rev/77626c8d6bee.

[66] D. Kohlbrenner and H. Shacham, “Trusted Browsers for Un-
certain Times.” in USENIX Security’16.

[67] “Re-enable SharedArrayBuffer + Atomics,” https://bugs.
chromium.org/p/chromium/issues/detail?id=821270.

[68] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest,
“Spectre is Here to Stay: An Analysis of Side-Channels and
Speculative Execution.”

[69] “Process Isolation in Firefox,” https://mozilla.
github.io/firefox-browser-architecture/text/
0012-process-isolation-in-firefox.html.

[70] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“SGXPECTRE Attacks: Leaking Enclave Secrets via Specula-
tive Execution.”

[71] G. Maisuradze and C. Rossow, “ret2spec: Speculative Execu-
tion using Return Stack Buffers,” 2018.

[72] J. Horn, “Speculative Store Bypass,” https://bugs.chromium.
org/p/project-zero/issues/detail?id=1528, May 2018.

[73] Intel, “Rogue System Register Read / CVE-2018-
3640 / INTEL-SA-00115,” https://software.intel.
com/security-software-guidance/software-guidance/
rogue-system-register-read, May 2018.

[74] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels,” 2018.

[75] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and
Y. Yarom, “Foreshadow-NG: Breaking the virtual memory
abstraction with transient out-of-order execution,” Technical
report, 2018.

[76] Intel, “Intel Analysis of Speculative Execution Side
Channels: White paper,” Jan 2018, https://newsroom.
intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
Retrieved 15.10.2018.

[77] D. Woodhouse, “x86/retpoline: Fill RSB on Context
Switch for Affected CPUs,” https://git.kernel.org/pub/
scm/linux/kernel/git/torvalds/linux.git/commit/?id=
c995efd5a740d9cbafbf58bde4973e8b50b4d761, Jan 2018.

[78] Intel, “Deep Dive: Intel Analysis of L1 Terminal Fault,”
https://software.intel.com/security-software-guidance/
insights/deep-dive-intel-analysis-l1-terminal-fault Retrieved
15.10.2018.

https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://blogs.technet.microsoft.com/virtualization/2018/08/14/hyper-v-hyperclear/
https://blogs.technet.microsoft.com/virtualization/2018/08/14/hyper-v-hyperclear/
https://www.chromium.org/Home/chromium-security/ssca
https://www.chromium.org/Home/chromium-security/ssca
https://v8.dev/docs/untrusted-code-mitigations
https://v8.dev/docs/untrusted-code-mitigations
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://hg.mozilla.org/mozilla-central/rev/77626c8d6bee
https://hg.mozilla.org/mozilla-central/rev/77626c8d6bee
https://bugs.chromium.org/p/chromium/issues/detail?id=821270
https://bugs.chromium.org/p/chromium/issues/detail?id=821270
https://mozilla.github.io/firefox-browser-architecture/text/0012-process-isolation-in-firefox.html
https://mozilla.github.io/firefox-browser-architecture/text/0012-process-isolation-in-firefox.html
https://mozilla.github.io/firefox-browser-architecture/text/0012-process-isolation-in-firefox.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c995efd5a740d9cbafbf58bde4973e8b50b4d761
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c995efd5a740d9cbafbf58bde4973e8b50b4d761
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c995efd5a740d9cbafbf58bde4973e8b50b4d761
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-l1-terminal-fault

[79] J. Horn, “Reading Privileged Memory with a Side-
channel,” https://googleprojectzero.blogspot.com/2018/
01/reading-privileged-memory-with-side.html, Jan 2018.

[80] “Intel Announces 9th Generation Core CPUs, Eight-Core
Core i9-9900K,” https://www.tomshardware.com/news/
intel-9th-generation-coffee-lake-refresh,37898.html.

[81] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang, “EPTI: Efficient
Defence against Meltdown Attack for Unpatched VMs,” in
ATC’18).

Appendix A
Vulnerability details

Intel has disclosed several CVEs covering different in-
stances of RIDL-class vulnerabilities, which Intel refers to
as “Microarchitectural Data Sampling” (MDS). As part of
the responsible disclosure process, Intel confirmed that the
example RIDL exploits we submitted to Intel leak in-flight
data from both LFBs and load ports, and acknowledged us
as the first academic finders of both relevant vulnerabili-
ties. Specific details of the vulnerabilities and the in-flight
data source they leak from are shown in Table IV.

Appendix B
Statements from CPU Vendors

A. Statement from Intel
“We have disclosed details about the issue described

in VU Amsterdam’s paper with multiple parties in the
computing ecosystem who have the ability to help de-
velop mitigations. This includes operating system vendors
such as MSFT and Redhat, hypervisor vendors such as
VMWare and Citrix, silicon vendors or licensors such as
AMD and ARM, select operating system providers or
maintainers for open source projects, and others. These
disclosures have been conducted under coordinated vulner-
ability disclosure for purposes of architecting, validating,
and delivering mitigations, and all parties agreed to mutual
confidentiality and embargo until 10AM PT May 14, 2019”.

B. Statement from AMD
“After reviewing the paper and unsuccessfully trying

to replicate the issue, AMD believes its products are not
vulnerable to the described issue”.

C. Statement from ARM
“After reviewing the paper and working with archi-

tecture licensees we are not aware of any Arm-based
implementations which are affected by this issue. We thank
VU Amsterdam for their research”.

Appendix C
Extended Results

Figure 9 shows a more complete diagram of the Intel
Skylake microarchitecture.

Figure 10 shows a screenshot of our tool to test for
existing vulnerabilities as well as RIDL, to check what
mitigations are available and enabled and to provide a
general overview including the installed microcode version.
We will release this tool as open source, as well as provide
binaries of this tool for various platforms including Mi-
crosoft Windows and Linux.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.tomshardware.com/news/intel-9th-generation-coffee-lake-refresh,37898.html
https://www.tomshardware.com/news/intel-9th-generation-coffee-lake-refresh,37898.html

TABLE IV: Specific RIDL-class vulnerability instances disclosed by Intel

Description CVE identifier Data source Used in this paper?

Microarchitectural Store Buffer Data Sampling CVE-2018-12126 Store buffers 7
Microarchitectural Load Port Data Sampling CVE-2018-12127 Load ports ✓
Microarchitectural Fill Buffer Data Sampling CVE-2018-12130 Fill buffers ✓
Microarchitectural Data Sampling Uncacheable Memory CVE-2019-11091 N/A† ✓

† This CVE refers to (uncacheable memory) attacks that exploit the other MDS vulnerabilities.

CPU
Core

LLC Slice LLC Slice

LLC Slice LLC Slice

CPU
Core

CPU
Core6 µOPs

CPU
Core

Memory
Controller

PCIe

Display
Controller

System Agent

Com
plex

Sim
ple

5-way DecoderµCode
Sequencer

MS
ROM Sim

ple

Sim
ple

Sim
ple

5 MOPs

Macro
Fusion

Instruction Queue
(2x25 entries)

Instruction
Predecode & Fetch

(16 bytes)

6 MOPs

Multiplexer

3-4 µO
Ps

3-4 µO
Ps

µO
P

µO
P

µO
P

µO
P

5 µO
Ps

4 µOPs

Stack Engine

Adders

Micro
Fusion

Allocation Queue
(2x64 entries)

µOP Cache
1.5K µOPs

8-way

Branch
Prediction

Unit

L1i Cache
32 kiB
8-way

Instruction
µOP

Cache Tags

Allocation Queue
(2x64 entries)

Allocation Queue
(2x64 entries)

Register
Allocation & Renaming

Physical
Register File

Integer
Registers

(180 entries)

Vector
Registers

(168 entries)

loads

6 µOPs

Branch Order Buffer
(48 entries)

Re-order Buffer
(224 entries)

branches

stores

µOPs

4 µOPs

port 0
INT ALU
INT DIV

IVEC ALU
IVEC MUL
FP FMA

AES
VEC STR
FP DIV
Branch

port 2

INT ALU
INT MUL

IVEC ALU
IVEC MUL
FP FMA
Bit Scan

INT ALU
VEC

SHUFFLE
IVEC ALU

LEA

INT ALU
Branch

AGU
LOAD

STORE AGU

Execution Units

L2 Cache
256 kiB
4-way

L1d Cache
32 kiB
8-way

Line Fill
Buffer

(10 entries)

Store & Forward Buffer
(56 entries)

Retirement Unit

Load Buffer
(72 entries)

L1i TLB

L1d TLB
L2 TLB

Com
m

on D
ata Buses

AGU
LOAD

port 3

port 4

port 7

port 6

port 5

µOP Scheduler
Unified Reservation Station (97 entries)

port 1

Front-end Memory Pipeline Out-of-Order Engine

Primary
RAT

Register Alias Table
Shadow

RAT

Return Stack
Buffer

Branch
Target Buffer

1 3 2

Fig. 9: a full overview of the Intel Skylake microarchitecture.

Fig. 10: A screenshot of our tool to test for vulnerabilities and mitigations including RIDL.

	Introduction
	Background
	Caches
	Out-of-Order Execution
	Speculative Execution
	In-flight Data

	Threat Model
	Overview
	Line fill buffers and how to use them
	Solving a RIDL: LFB leaks on loads and stores
	Synchronization

	Exploitation with RIDL
	Cross-process attacks
	Cross-VM attacks
	Kernel attacks
	Leaking arbitrary kernel memory
	Page table disclosure
	SGX attacks
	JavaScript attacks

	Speculative execution attacks
	Control Speculation
	Data Speculation
	Comparing with RIDL

	Existing defenses
	Inhibiting the trigger
	Protect the secret
	Defenses vs. RIDL

	New Mitigations
	Conclusion
	References
	Appendix A: Vulnerability details
	Appendix B: Statements from CPU Vendors
	Statement from Intel
	Statement from AMD
	Statement from ARM

	Appendix C: Extended Results

